Abu Jaffor Morshedul Abedin , Rusab Sarmun , Adam Mushtak , Mohamed Sultan Bin Mohamed Ali , Anwarul Hasan , Ponnuthurai Nagaratnam Suganthan , Muhammad E.H. Chowdhury
{"title":"增强冠状动脉分割和狭窄检测:利用新的深度学习技术","authors":"Abu Jaffor Morshedul Abedin , Rusab Sarmun , Adam Mushtak , Mohamed Sultan Bin Mohamed Ali , Anwarul Hasan , Ponnuthurai Nagaratnam Suganthan , Muhammad E.H. Chowdhury","doi":"10.1016/j.bspc.2025.108023","DOIUrl":null,"url":null,"abstract":"<div><div>Coronary artery disease (CAD) is a significant global health concern, emphasizing the need for reliable and automated diagnostic solutions. This study proposes a novel deep learning framework aimed at improving both full artery segmentation and stenosis localization by incorporating Self-Organizing Neural Networks (Self-ONN). The DenseSelfU-Net model leverages DenseNet121 as an encoder and a Self-ONN enhanced decoder within a U-Net based architecture to achieve robust feature extraction and precise full artery segmentation, achieving an IoU of 82.52% and a Dice score of 90.35% on the ARCADE Challenge dataset. For stenosis localization, Self-ONN is integrated into key components of the Multi-Scale Attention Network (MA-Net), which includes the Multi-Scale Fusion Attention Block (MFAB) and the Position-wise Attention Block (PAB), capturing complex vascular patterns through both local and global dependencies and resulting in the DenseSelfMA-Net model. The DenseSelfMA-Net achieves Dice scores of 60.59% and 60.36% and IoU scores of 46.09% and 45.36% for the MFAB and PAB configurations, respectively on the ARCADE challenge dataset. These results demonstrate the effectiveness of Self-ONN in enhancing diagnostic precision and facilitating early CAD diagnosis, with promising implications for clinical practice.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"109 ","pages":"Article 108023"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques\",\"authors\":\"Abu Jaffor Morshedul Abedin , Rusab Sarmun , Adam Mushtak , Mohamed Sultan Bin Mohamed Ali , Anwarul Hasan , Ponnuthurai Nagaratnam Suganthan , Muhammad E.H. Chowdhury\",\"doi\":\"10.1016/j.bspc.2025.108023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coronary artery disease (CAD) is a significant global health concern, emphasizing the need for reliable and automated diagnostic solutions. This study proposes a novel deep learning framework aimed at improving both full artery segmentation and stenosis localization by incorporating Self-Organizing Neural Networks (Self-ONN). The DenseSelfU-Net model leverages DenseNet121 as an encoder and a Self-ONN enhanced decoder within a U-Net based architecture to achieve robust feature extraction and precise full artery segmentation, achieving an IoU of 82.52% and a Dice score of 90.35% on the ARCADE Challenge dataset. For stenosis localization, Self-ONN is integrated into key components of the Multi-Scale Attention Network (MA-Net), which includes the Multi-Scale Fusion Attention Block (MFAB) and the Position-wise Attention Block (PAB), capturing complex vascular patterns through both local and global dependencies and resulting in the DenseSelfMA-Net model. The DenseSelfMA-Net achieves Dice scores of 60.59% and 60.36% and IoU scores of 46.09% and 45.36% for the MFAB and PAB configurations, respectively on the ARCADE challenge dataset. These results demonstrate the effectiveness of Self-ONN in enhancing diagnostic precision and facilitating early CAD diagnosis, with promising implications for clinical practice.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":\"109 \",\"pages\":\"Article 108023\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809425005348\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425005348","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques
Coronary artery disease (CAD) is a significant global health concern, emphasizing the need for reliable and automated diagnostic solutions. This study proposes a novel deep learning framework aimed at improving both full artery segmentation and stenosis localization by incorporating Self-Organizing Neural Networks (Self-ONN). The DenseSelfU-Net model leverages DenseNet121 as an encoder and a Self-ONN enhanced decoder within a U-Net based architecture to achieve robust feature extraction and precise full artery segmentation, achieving an IoU of 82.52% and a Dice score of 90.35% on the ARCADE Challenge dataset. For stenosis localization, Self-ONN is integrated into key components of the Multi-Scale Attention Network (MA-Net), which includes the Multi-Scale Fusion Attention Block (MFAB) and the Position-wise Attention Block (PAB), capturing complex vascular patterns through both local and global dependencies and resulting in the DenseSelfMA-Net model. The DenseSelfMA-Net achieves Dice scores of 60.59% and 60.36% and IoU scores of 46.09% and 45.36% for the MFAB and PAB configurations, respectively on the ARCADE challenge dataset. These results demonstrate the effectiveness of Self-ONN in enhancing diagnostic precision and facilitating early CAD diagnosis, with promising implications for clinical practice.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.