Fei Shang , Li Huo , Tan Gong , Peipei Wang , Ximin Shi , Xiaoying Tang , Shuai Liu
{"title":"一种基于特征点检测的PET心肌灌注成像定量分析方法","authors":"Fei Shang , Li Huo , Tan Gong , Peipei Wang , Ximin Shi , Xiaoying Tang , Shuai Liu","doi":"10.1016/j.cmpb.2025.108837","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Reorienting cardiac positron emission tomography (PET) images to the transaxial plane is essential for cardiac PET image analysis. This study aims to design a convolutional neural network (CNN) for automatic reorientation and evaluate its generalizability.</div></div><div><h3>Methods</h3><div>An artificial intelligence (AI) method integrating U-Net and the differentiable spatial to numeric transform module (DSNT-U) was proposed to automatically position three feature points (P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub>), with these three points manually located by an experienced radiologist as the reference standard (RS). A second radiologist performed manual location for reproducibility evaluation. The DSNT-U, initially trained and tested on a [<sup>11</sup>C]acetate dataset (training/testing: 40/17), was further compared with a CNN-spatial transformer network (CNN-STN). The network fine-tuned with 4 subjects was tested on a [<sup>13</sup>N]ammonia dataset (<em>n</em> = 30). The performance of the DSNT-U was evaluated in terms of coordinates, volume, and quantitative indexes (pharmacokinetic parameters and total perfusion deficit).</div></div><div><h3>Results</h3><div>The proposed DSNT-U successfully achieved automatic myocardial reorientation for both [<sup>11</sup>C]acetate and [<sup>13</sup>N]ammonia datasets. For the former dataset, the intraclass correlation coefficients (ICCs) between the coordinates predicted by the DSNT-U and the RS exceeded 0.876. The average normalized mean squared error (NMSE) between the short-axis (SA) images obtained through DSNT-U-based reorientation and the reference SA images was 0.051 ± 0.043. For pharmacokinetic parameters, the R² between the DSNT-U and the RS was larger than 0.968. Compared with the CNN-STN, the DSNT-U demonstrated a higher ICC between the estimated rigid transformation parameters and the RS. After fine-tuning on the [<sup>13</sup>N]ammonia dataset, the average NMSE between the SA images reoriented by the DSNT-U and the reference SA images was 0.056 ± 0.046. The ICC between the total perfusion deficit (TPD) values computed from DSNT-U-derived images and the reference values was 0.981. Furthermore, no significant differences were observed in the performance of the DSNT-U prediction among subjects with different genders or varying myocardial perfusion defect (MPD) statuses.</div></div><div><h3>Conclusions</h3><div>The proposed DSNT-U can accurately position P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub> on the [<sup>11</sup>C]acetate dataset. After fine-tuning, the positioning model can be applied to the [<sup>13</sup>N]ammonia perfusion dataset, demonstrating good generalization performance. This method can adapt to data of different genders (with or without MPD) and different tracers, displaying the potential to replace manual operations.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"268 ","pages":"Article 108837"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A myocardial reorientation method based on feature point detection for quantitative analysis of PET myocardial perfusion imaging\",\"authors\":\"Fei Shang , Li Huo , Tan Gong , Peipei Wang , Ximin Shi , Xiaoying Tang , Shuai Liu\",\"doi\":\"10.1016/j.cmpb.2025.108837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Reorienting cardiac positron emission tomography (PET) images to the transaxial plane is essential for cardiac PET image analysis. This study aims to design a convolutional neural network (CNN) for automatic reorientation and evaluate its generalizability.</div></div><div><h3>Methods</h3><div>An artificial intelligence (AI) method integrating U-Net and the differentiable spatial to numeric transform module (DSNT-U) was proposed to automatically position three feature points (P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub>), with these three points manually located by an experienced radiologist as the reference standard (RS). A second radiologist performed manual location for reproducibility evaluation. The DSNT-U, initially trained and tested on a [<sup>11</sup>C]acetate dataset (training/testing: 40/17), was further compared with a CNN-spatial transformer network (CNN-STN). The network fine-tuned with 4 subjects was tested on a [<sup>13</sup>N]ammonia dataset (<em>n</em> = 30). The performance of the DSNT-U was evaluated in terms of coordinates, volume, and quantitative indexes (pharmacokinetic parameters and total perfusion deficit).</div></div><div><h3>Results</h3><div>The proposed DSNT-U successfully achieved automatic myocardial reorientation for both [<sup>11</sup>C]acetate and [<sup>13</sup>N]ammonia datasets. For the former dataset, the intraclass correlation coefficients (ICCs) between the coordinates predicted by the DSNT-U and the RS exceeded 0.876. The average normalized mean squared error (NMSE) between the short-axis (SA) images obtained through DSNT-U-based reorientation and the reference SA images was 0.051 ± 0.043. For pharmacokinetic parameters, the R² between the DSNT-U and the RS was larger than 0.968. Compared with the CNN-STN, the DSNT-U demonstrated a higher ICC between the estimated rigid transformation parameters and the RS. After fine-tuning on the [<sup>13</sup>N]ammonia dataset, the average NMSE between the SA images reoriented by the DSNT-U and the reference SA images was 0.056 ± 0.046. The ICC between the total perfusion deficit (TPD) values computed from DSNT-U-derived images and the reference values was 0.981. Furthermore, no significant differences were observed in the performance of the DSNT-U prediction among subjects with different genders or varying myocardial perfusion defect (MPD) statuses.</div></div><div><h3>Conclusions</h3><div>The proposed DSNT-U can accurately position P<sub>apex</sub>, P<sub>base</sub>, and P<sub>RV</sub> on the [<sup>11</sup>C]acetate dataset. After fine-tuning, the positioning model can be applied to the [<sup>13</sup>N]ammonia perfusion dataset, demonstrating good generalization performance. This method can adapt to data of different genders (with or without MPD) and different tracers, displaying the potential to replace manual operations.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"268 \",\"pages\":\"Article 108837\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725002548\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725002548","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A myocardial reorientation method based on feature point detection for quantitative analysis of PET myocardial perfusion imaging
Objective
Reorienting cardiac positron emission tomography (PET) images to the transaxial plane is essential for cardiac PET image analysis. This study aims to design a convolutional neural network (CNN) for automatic reorientation and evaluate its generalizability.
Methods
An artificial intelligence (AI) method integrating U-Net and the differentiable spatial to numeric transform module (DSNT-U) was proposed to automatically position three feature points (Papex, Pbase, and PRV), with these three points manually located by an experienced radiologist as the reference standard (RS). A second radiologist performed manual location for reproducibility evaluation. The DSNT-U, initially trained and tested on a [11C]acetate dataset (training/testing: 40/17), was further compared with a CNN-spatial transformer network (CNN-STN). The network fine-tuned with 4 subjects was tested on a [13N]ammonia dataset (n = 30). The performance of the DSNT-U was evaluated in terms of coordinates, volume, and quantitative indexes (pharmacokinetic parameters and total perfusion deficit).
Results
The proposed DSNT-U successfully achieved automatic myocardial reorientation for both [11C]acetate and [13N]ammonia datasets. For the former dataset, the intraclass correlation coefficients (ICCs) between the coordinates predicted by the DSNT-U and the RS exceeded 0.876. The average normalized mean squared error (NMSE) between the short-axis (SA) images obtained through DSNT-U-based reorientation and the reference SA images was 0.051 ± 0.043. For pharmacokinetic parameters, the R² between the DSNT-U and the RS was larger than 0.968. Compared with the CNN-STN, the DSNT-U demonstrated a higher ICC between the estimated rigid transformation parameters and the RS. After fine-tuning on the [13N]ammonia dataset, the average NMSE between the SA images reoriented by the DSNT-U and the reference SA images was 0.056 ± 0.046. The ICC between the total perfusion deficit (TPD) values computed from DSNT-U-derived images and the reference values was 0.981. Furthermore, no significant differences were observed in the performance of the DSNT-U prediction among subjects with different genders or varying myocardial perfusion defect (MPD) statuses.
Conclusions
The proposed DSNT-U can accurately position Papex, Pbase, and PRV on the [11C]acetate dataset. After fine-tuning, the positioning model can be applied to the [13N]ammonia perfusion dataset, demonstrating good generalization performance. This method can adapt to data of different genders (with or without MPD) and different tracers, displaying the potential to replace manual operations.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.