霍夫施塔特蝴蝶拓扑与分形的相互作用

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Indubala I. Satija
{"title":"霍夫施塔特蝴蝶拓扑与分形的相互作用","authors":"Indubala I. Satija","doi":"10.1016/j.physleta.2025.130635","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the tree structure underlying the Hofstadter butterfly fractal is a topological entity, solely determined by the Chern numbers of the butterflies. The topological quanta that label every butterfly in the butterfly graph are the band and the gap Cherns, the latter being the quanta of Hall conductivity. The mathematical framework to build the butterfly fractal consists of eight generators represented by <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> unimodular matrices with integer coefficients. In the iterative process, a parent butterfly produces a sextuplet of butterflies, each attached to a tail that itself is made up of an infinity of butterflies of monotonically decreasing sizes. This eightfold way of building the butterfly fractal identifies <em>butterfly with a tail</em> as the building blocks of the butterfly graph.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"552 ","pages":"Article 130635"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay between topology and fractality of the hofstadter butterfly\",\"authors\":\"Indubala I. Satija\",\"doi\":\"10.1016/j.physleta.2025.130635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the tree structure underlying the Hofstadter butterfly fractal is a topological entity, solely determined by the Chern numbers of the butterflies. The topological quanta that label every butterfly in the butterfly graph are the band and the gap Cherns, the latter being the quanta of Hall conductivity. The mathematical framework to build the butterfly fractal consists of eight generators represented by <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> unimodular matrices with integer coefficients. In the iterative process, a parent butterfly produces a sextuplet of butterflies, each attached to a tail that itself is made up of an infinity of butterflies of monotonically decreasing sizes. This eightfold way of building the butterfly fractal identifies <em>butterfly with a tail</em> as the building blocks of the butterfly graph.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"552 \",\"pages\":\"Article 130635\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125004153\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125004153","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了霍夫施塔特蝴蝶分形的树状结构是一个拓扑实体,仅由蝴蝶的陈氏数决定。标记蝴蝶图中每只蝴蝶的拓扑量子是带和隙量子,后者是霍尔电导率的量子。构建蝴蝶分形的数学框架由八个生成器组成,用整数系数的单模矩阵3×3表示。在迭代过程中,一只母蝴蝶产生六联体蝴蝶,每一个都附着在一条尾巴上,而尾巴本身是由无穷多只尺寸单调递减的蝴蝶组成的。这种构建蝴蝶分形的八重方法将有尾巴的蝴蝶识别为蝴蝶图的构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interplay between topology and fractality of the hofstadter butterfly
We show that the tree structure underlying the Hofstadter butterfly fractal is a topological entity, solely determined by the Chern numbers of the butterflies. The topological quanta that label every butterfly in the butterfly graph are the band and the gap Cherns, the latter being the quanta of Hall conductivity. The mathematical framework to build the butterfly fractal consists of eight generators represented by 3×3 unimodular matrices with integer coefficients. In the iterative process, a parent butterfly produces a sextuplet of butterflies, each attached to a tail that itself is made up of an infinity of butterflies of monotonically decreasing sizes. This eightfold way of building the butterfly fractal identifies butterfly with a tail as the building blocks of the butterfly graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信