优化边缘设备遥感图像中的火灾探测:量化增强的混合深度学习模型

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Syed Muhammad Salman Bukhari , Nadia Dahmani , Sujan Gyawali , Muhammad Hamza Zafar , Filippo Sanfilippo , Kiran Raja
{"title":"优化边缘设备遥感图像中的火灾探测:量化增强的混合深度学习模型","authors":"Syed Muhammad Salman Bukhari ,&nbsp;Nadia Dahmani ,&nbsp;Sujan Gyawali ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Filippo Sanfilippo ,&nbsp;Kiran Raja","doi":"10.1016/j.displa.2025.103070","DOIUrl":null,"url":null,"abstract":"<div><div>Wildfires are increasing in frequency and severity, presenting critical challenges for timely detection and response, particularly in remote or resource-limited environments. This study introduces the Inception-ResNet Transformer with Quantization (IRTQ), a novel hybrid deep learning (DL) framework that integrates multi-scale feature extraction with global attention and advanced quantization. The proposed model is specifically optimized for edge deployment on platforms such as unmanned aerial vehicles (UAVs), offering a unique combination of high accuracy, low latency, and compact memory footprint. The IRTQ model achieves 98.9% accuracy across diverse datasets and shows strong generalization through cross-dataset validation. Quantization significantly reduces the parameter count to 0.09M and memory usage to 0.13 MB, enabling real-time inference in 3 ms. Interpretability is further enhanced through Grad-CAM visualizations, supporting transparent decision-making. While achieving state-of-the-art performance, the model encounters challenges in visually ambiguous fire-like regions. To address these, future work will explore multi-modal inputs and extend the model towards multi-class classification. IRTQ represents a technically grounded, interpretable, and deployable solution for AI-driven wildfire detection and disaster response.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"89 ","pages":"Article 103070"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing fire detection in remote sensing imagery for edge devices: A quantization-enhanced hybrid deep learning model\",\"authors\":\"Syed Muhammad Salman Bukhari ,&nbsp;Nadia Dahmani ,&nbsp;Sujan Gyawali ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Filippo Sanfilippo ,&nbsp;Kiran Raja\",\"doi\":\"10.1016/j.displa.2025.103070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wildfires are increasing in frequency and severity, presenting critical challenges for timely detection and response, particularly in remote or resource-limited environments. This study introduces the Inception-ResNet Transformer with Quantization (IRTQ), a novel hybrid deep learning (DL) framework that integrates multi-scale feature extraction with global attention and advanced quantization. The proposed model is specifically optimized for edge deployment on platforms such as unmanned aerial vehicles (UAVs), offering a unique combination of high accuracy, low latency, and compact memory footprint. The IRTQ model achieves 98.9% accuracy across diverse datasets and shows strong generalization through cross-dataset validation. Quantization significantly reduces the parameter count to 0.09M and memory usage to 0.13 MB, enabling real-time inference in 3 ms. Interpretability is further enhanced through Grad-CAM visualizations, supporting transparent decision-making. While achieving state-of-the-art performance, the model encounters challenges in visually ambiguous fire-like regions. To address these, future work will explore multi-modal inputs and extend the model towards multi-class classification. IRTQ represents a technically grounded, interpretable, and deployable solution for AI-driven wildfire detection and disaster response.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"89 \",\"pages\":\"Article 103070\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225001076\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225001076","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

野火的频率和严重程度都在增加,对及时发现和应对提出了严峻挑战,特别是在偏远或资源有限的环境中。本研究引入了Inception-ResNet Transformer with quanti量化(IRTQ),这是一种新型的混合深度学习(DL)框架,它将多尺度特征提取与全局关注和高级量化相结合。所提出的模型专门针对无人机(uav)等平台的边缘部署进行了优化,提供了高精度、低延迟和紧凑内存占用的独特组合。IRTQ模型在不同数据集上的准确率达到98.9%,并通过跨数据集验证显示出较强的泛化能力。量化显著地将参数计数减少到0.09M,内存使用量减少到0.13 MB,从而在3 ms内实现实时推断。通过Grad-CAM可视化,可解释性进一步增强,支持透明的决策。在实现最先进性能的同时,该模型在视觉上模糊的火状区域遇到了挑战。为了解决这些问题,未来的工作将探索多模态输入,并将模型扩展到多类分类。IRTQ为人工智能驱动的野火探测和灾害响应提供了技术基础、可解释和可部署的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing fire detection in remote sensing imagery for edge devices: A quantization-enhanced hybrid deep learning model
Wildfires are increasing in frequency and severity, presenting critical challenges for timely detection and response, particularly in remote or resource-limited environments. This study introduces the Inception-ResNet Transformer with Quantization (IRTQ), a novel hybrid deep learning (DL) framework that integrates multi-scale feature extraction with global attention and advanced quantization. The proposed model is specifically optimized for edge deployment on platforms such as unmanned aerial vehicles (UAVs), offering a unique combination of high accuracy, low latency, and compact memory footprint. The IRTQ model achieves 98.9% accuracy across diverse datasets and shows strong generalization through cross-dataset validation. Quantization significantly reduces the parameter count to 0.09M and memory usage to 0.13 MB, enabling real-time inference in 3 ms. Interpretability is further enhanced through Grad-CAM visualizations, supporting transparent decision-making. While achieving state-of-the-art performance, the model encounters challenges in visually ambiguous fire-like regions. To address these, future work will explore multi-modal inputs and extend the model towards multi-class classification. IRTQ represents a technically grounded, interpretable, and deployable solution for AI-driven wildfire detection and disaster response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信