Rafizul Islam Md , Matthew T. Lee , Andrew C. Cook , Jonathan Weir-McCall , Claire A. Martin , Thomas W. Peach , Gaetano Burriesci , Giorgia M. Bosi
{"title":"一种新的护身符Amplatzer编织模型,用于精确模拟左心房附件闭塞过程","authors":"Rafizul Islam Md , Matthew T. Lee , Andrew C. Cook , Jonathan Weir-McCall , Claire A. Martin , Thomas W. Peach , Gaetano Burriesci , Giorgia M. Bosi","doi":"10.1016/j.compbiomed.2025.110355","DOIUrl":null,"url":null,"abstract":"<div><div>Atrial Fibrillation (AF) is a cardiac disease altering the human heart rate. It is posing an increasing burden to society, with complications that lead to stroke and ischemic events from thromboembolisms, originating in the left atrial appendage (LAA). Percutaneous LAA occlusion (LAAO) is becoming an increasingly adopted preventive treatment option due to its minimally invasive nature. However, this treatment faces complex challenges: the heterogeneity of LAA morphologies limits the pre-operative planning and several procedures are associated with peri-device leakage from malposition and device-related thrombi. One of the two most commonly deployed LAAO devices (LAAODs) is the Amulet Amplatzer (AA), a mesh-like pacifier device. In-silico models have demonstrated their potential to serve as supporting tools for clinical planning, providing insight able to enhance the efficacy and safety of the intervention. Most of the computational studies approximate the AA to a closed surface model. In this work, we aimed to develop a more realistic and detailed structural model of the AA, capturing the mesh of wires. Experimental tests on the physical device were conducted to compare the behaviour of simplified closed surface models and the newly developed braided geometry. The results have demonstrated how closed surface models of the AA fail to capture the real deformation mechanism of the physical device. Conversely, the more realistic braided characterisation mimics more closely the changes in shape of the physical AA, by capturing the change in angles of the wires. Finally, the virtual deployment of the intertwined model into a patient-specific LAA resulted in a configuration similar to the clinically implanted AA.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110355"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new braided model of the Amulet Amplatzer for accurate simulations of left atrial appendage occlusion procedures\",\"authors\":\"Rafizul Islam Md , Matthew T. Lee , Andrew C. Cook , Jonathan Weir-McCall , Claire A. Martin , Thomas W. Peach , Gaetano Burriesci , Giorgia M. Bosi\",\"doi\":\"10.1016/j.compbiomed.2025.110355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atrial Fibrillation (AF) is a cardiac disease altering the human heart rate. It is posing an increasing burden to society, with complications that lead to stroke and ischemic events from thromboembolisms, originating in the left atrial appendage (LAA). Percutaneous LAA occlusion (LAAO) is becoming an increasingly adopted preventive treatment option due to its minimally invasive nature. However, this treatment faces complex challenges: the heterogeneity of LAA morphologies limits the pre-operative planning and several procedures are associated with peri-device leakage from malposition and device-related thrombi. One of the two most commonly deployed LAAO devices (LAAODs) is the Amulet Amplatzer (AA), a mesh-like pacifier device. In-silico models have demonstrated their potential to serve as supporting tools for clinical planning, providing insight able to enhance the efficacy and safety of the intervention. Most of the computational studies approximate the AA to a closed surface model. In this work, we aimed to develop a more realistic and detailed structural model of the AA, capturing the mesh of wires. Experimental tests on the physical device were conducted to compare the behaviour of simplified closed surface models and the newly developed braided geometry. The results have demonstrated how closed surface models of the AA fail to capture the real deformation mechanism of the physical device. Conversely, the more realistic braided characterisation mimics more closely the changes in shape of the physical AA, by capturing the change in angles of the wires. Finally, the virtual deployment of the intertwined model into a patient-specific LAA resulted in a configuration similar to the clinically implanted AA.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110355\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525007061\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525007061","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A new braided model of the Amulet Amplatzer for accurate simulations of left atrial appendage occlusion procedures
Atrial Fibrillation (AF) is a cardiac disease altering the human heart rate. It is posing an increasing burden to society, with complications that lead to stroke and ischemic events from thromboembolisms, originating in the left atrial appendage (LAA). Percutaneous LAA occlusion (LAAO) is becoming an increasingly adopted preventive treatment option due to its minimally invasive nature. However, this treatment faces complex challenges: the heterogeneity of LAA morphologies limits the pre-operative planning and several procedures are associated with peri-device leakage from malposition and device-related thrombi. One of the two most commonly deployed LAAO devices (LAAODs) is the Amulet Amplatzer (AA), a mesh-like pacifier device. In-silico models have demonstrated their potential to serve as supporting tools for clinical planning, providing insight able to enhance the efficacy and safety of the intervention. Most of the computational studies approximate the AA to a closed surface model. In this work, we aimed to develop a more realistic and detailed structural model of the AA, capturing the mesh of wires. Experimental tests on the physical device were conducted to compare the behaviour of simplified closed surface models and the newly developed braided geometry. The results have demonstrated how closed surface models of the AA fail to capture the real deformation mechanism of the physical device. Conversely, the more realistic braided characterisation mimics more closely the changes in shape of the physical AA, by capturing the change in angles of the wires. Finally, the virtual deployment of the intertwined model into a patient-specific LAA resulted in a configuration similar to the clinically implanted AA.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.