超临界相拉格朗日平均曲率流奇异性的先验估计

IF 1.3 2区 数学 Q1 MATHEMATICS
Arunima Bhattacharya, Jeremy Wall
{"title":"超临界相拉格朗日平均曲率流奇异性的先验估计","authors":"Arunima Bhattacharya,&nbsp;Jeremy Wall","doi":"10.1016/j.na.2025.113844","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove interior a priori estimates for singularities of the Lagrangian mean curvature flow assuming the Lagrangian phase is supercritical. We prove a Jacobi inequality that holds good when the Lagrangian phase is critical and supercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113844"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori estimates for Singularities of the Lagrangian Mean Curvature Flow with supercritical phase\",\"authors\":\"Arunima Bhattacharya,&nbsp;Jeremy Wall\",\"doi\":\"10.1016/j.na.2025.113844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove interior a priori estimates for singularities of the Lagrangian mean curvature flow assuming the Lagrangian phase is supercritical. We prove a Jacobi inequality that holds good when the Lagrangian phase is critical and supercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"259 \",\"pages\":\"Article 113844\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000987\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000987","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在拉格朗日相为超临界的条件下,证明了拉格朗日平均曲率流奇异性的内部先验估计。我们证明了当拉格朗日相是临界和超临界时,雅可比不等式是成立的。我们进一步将我们的结果推广到更广泛的一类拉格朗日平均曲率型方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori estimates for Singularities of the Lagrangian Mean Curvature Flow with supercritical phase
In this paper, we prove interior a priori estimates for singularities of the Lagrangian mean curvature flow assuming the Lagrangian phase is supercritical. We prove a Jacobi inequality that holds good when the Lagrangian phase is critical and supercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信