通过基于注意力的深度学习和可解释的人工智能增强营养状况预测

Heru Agus Santoso , Nur Setiawati Dewi , Su-Cheng Haw , Arga Dwi Pambudi , Sari Ayu Wulandari
{"title":"通过基于注意力的深度学习和可解释的人工智能增强营养状况预测","authors":"Heru Agus Santoso ,&nbsp;Nur Setiawati Dewi ,&nbsp;Su-Cheng Haw ,&nbsp;Arga Dwi Pambudi ,&nbsp;Sari Ayu Wulandari","doi":"10.1016/j.ibmed.2025.100255","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and interpretable prediction of child malnutrition remains a critical challenge, as existing AI models often lack the transparency needed for clinical adoption. This study introduces a deep learning framework enhanced with Multi-Head Attention (MHA) for nutritional status prediction, offering a novel contribution through the first direct head-to-head comparison of CNN-MHA and LSTM-MHA to evaluate the effectiveness of spatial feature learning versus sequential dependency modeling in structured anthropometric tabular data. Our framework integrates advanced preprocessing techniques, feature selection, and Explainable AI (SHAP), enabling clinically aligned and transparent predictions. Experimental results on a 9605-sample dataset reveal that CNN-MHA achieves superior performance (99.08 % accuracy) compared to LSTM-MHA (98.91 %), confirming that spatial modeling is better suited for this dataset type. SHAP-based feature attribution further validates WHO-standard z-scores as the most influential predictors, enhancing model credibility for clinical application. Additionally, the study introduces an IoT-enabled anthropometric data acquisition system, enhancing real-time monitoring and scalability. This research represents a significant methodological advancement in nutritional status prediction, addressing key gaps in feature prioritization, accuracy, and interpretability. By bridging the gap between high-accuracy AI and clinical transparency, this study advances AI-driven nutritional monitoring and offers a scalable, explainable framework for public health interventions. Future research should explore multi-modal data integration to further enhance generalizability and real-world applicability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100255"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing nutritional status prediction through attention-based deep learning and explainable AI\",\"authors\":\"Heru Agus Santoso ,&nbsp;Nur Setiawati Dewi ,&nbsp;Su-Cheng Haw ,&nbsp;Arga Dwi Pambudi ,&nbsp;Sari Ayu Wulandari\",\"doi\":\"10.1016/j.ibmed.2025.100255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and interpretable prediction of child malnutrition remains a critical challenge, as existing AI models often lack the transparency needed for clinical adoption. This study introduces a deep learning framework enhanced with Multi-Head Attention (MHA) for nutritional status prediction, offering a novel contribution through the first direct head-to-head comparison of CNN-MHA and LSTM-MHA to evaluate the effectiveness of spatial feature learning versus sequential dependency modeling in structured anthropometric tabular data. Our framework integrates advanced preprocessing techniques, feature selection, and Explainable AI (SHAP), enabling clinically aligned and transparent predictions. Experimental results on a 9605-sample dataset reveal that CNN-MHA achieves superior performance (99.08 % accuracy) compared to LSTM-MHA (98.91 %), confirming that spatial modeling is better suited for this dataset type. SHAP-based feature attribution further validates WHO-standard z-scores as the most influential predictors, enhancing model credibility for clinical application. Additionally, the study introduces an IoT-enabled anthropometric data acquisition system, enhancing real-time monitoring and scalability. This research represents a significant methodological advancement in nutritional status prediction, addressing key gaps in feature prioritization, accuracy, and interpretability. By bridging the gap between high-accuracy AI and clinical transparency, this study advances AI-driven nutritional monitoring and offers a scalable, explainable framework for public health interventions. Future research should explore multi-modal data integration to further enhance generalizability and real-world applicability.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对儿童营养不良的准确和可解释的预测仍然是一项重大挑战,因为现有的人工智能模型往往缺乏临床采用所需的透明度。本研究引入了一个增强了多头注意(MHA)的深度学习框架,用于营养状况预测,通过CNN-MHA和LSTM-MHA的首次直接正面比较,提供了一种新的贡献,以评估空间特征学习与序列依赖模型在结构化人体测量表格数据中的有效性。我们的框架集成了先进的预处理技术、特征选择和可解释人工智能(SHAP),使临床一致和透明的预测成为可能。在9605个样本数据集上的实验结果表明,CNN-MHA的准确率(99.08%)优于LSTM-MHA(98.91%),证实了空间建模更适合该数据集类型。基于shap的特征归因进一步验证了who标准z分数作为最具影响力的预测因子,提高了模型在临床应用中的可信度。此外,该研究还引入了一个支持物联网的人体测量数据采集系统,增强了实时监控和可扩展性。这项研究代表了营养状况预测的重要方法进步,解决了特征优先级,准确性和可解释性方面的关键差距。通过弥合高精度人工智能与临床透明度之间的差距,本研究推进了人工智能驱动的营养监测,并为公共卫生干预提供了一个可扩展、可解释的框架。未来的研究应探索多模态数据集成,以进一步提高通用性和现实适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing nutritional status prediction through attention-based deep learning and explainable AI
Accurate and interpretable prediction of child malnutrition remains a critical challenge, as existing AI models often lack the transparency needed for clinical adoption. This study introduces a deep learning framework enhanced with Multi-Head Attention (MHA) for nutritional status prediction, offering a novel contribution through the first direct head-to-head comparison of CNN-MHA and LSTM-MHA to evaluate the effectiveness of spatial feature learning versus sequential dependency modeling in structured anthropometric tabular data. Our framework integrates advanced preprocessing techniques, feature selection, and Explainable AI (SHAP), enabling clinically aligned and transparent predictions. Experimental results on a 9605-sample dataset reveal that CNN-MHA achieves superior performance (99.08 % accuracy) compared to LSTM-MHA (98.91 %), confirming that spatial modeling is better suited for this dataset type. SHAP-based feature attribution further validates WHO-standard z-scores as the most influential predictors, enhancing model credibility for clinical application. Additionally, the study introduces an IoT-enabled anthropometric data acquisition system, enhancing real-time monitoring and scalability. This research represents a significant methodological advancement in nutritional status prediction, addressing key gaps in feature prioritization, accuracy, and interpretability. By bridging the gap between high-accuracy AI and clinical transparency, this study advances AI-driven nutritional monitoring and offers a scalable, explainable framework for public health interventions. Future research should explore multi-modal data integration to further enhance generalizability and real-world applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信