{"title":"颜色:一种基于组合线性操作的蛋白质序列表示,用于鉴定单体对性质的贡献","authors":"Akash Pandey, Wei Chen and Sinan Keten*, ","doi":"10.1021/acs.jcim.5c0020510.1021/acs.jcim.5c00205","DOIUrl":null,"url":null,"abstract":"<p >The properties of biological materials like proteins and nucleic acids are largely determined by their primary sequence. Certain segments in the sequence strongly influence specific functions, but identifying these segments, or so-called motifs, is challenging due to the complexity of sequential data. While deep learning (DL) models can accurately capture sequence–property relationships, the degree of nonlinearity in these models limits the assessment of monomer contributions to a property─a critical step in identifying key motifs. Recent advances in explainable AI (XAI) offer attention and gradient-based methods for estimating monomeric contributions. However, these methods are primarily applied to classification tasks, such as binding site identification, where they achieve limited accuracy (40–45%) and rely on qualitative evaluations. To address these limitations, we introduce a DL model with interpretable steps, enabling direct tracing of monomeric contributions. Inspired by the masking technique commonly used in vision and natural language processing domains, we propose a new metric <i></i><math><mo>(</mo><mi>I</mi><mo>)</mo></math> for quantitative analysis on datasets mainly containing distinct properties of anticancer peptides (ACP), antimicrobial peptides (AMP), and collagen. Our model exhibits 22% higher explainability than the gradient and attention-based state-of-the-art models, recognizes critical motifs (RRR, RRI, and RSS) that significantly destabilize ACPs, and identifies motifs in AMPs that are 50% more effective in converting non-AMPs to AMPs. These findings highlight the potential of our model in guiding mutation strategies for designing protein-based biomaterials.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 9","pages":"4320–4333 4320–4333"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COLOR: A Compositional Linear Operation-Based Representation of Protein Sequences for Identification of Monomer Contributions to Properties\",\"authors\":\"Akash Pandey, Wei Chen and Sinan Keten*, \",\"doi\":\"10.1021/acs.jcim.5c0020510.1021/acs.jcim.5c00205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The properties of biological materials like proteins and nucleic acids are largely determined by their primary sequence. Certain segments in the sequence strongly influence specific functions, but identifying these segments, or so-called motifs, is challenging due to the complexity of sequential data. While deep learning (DL) models can accurately capture sequence–property relationships, the degree of nonlinearity in these models limits the assessment of monomer contributions to a property─a critical step in identifying key motifs. Recent advances in explainable AI (XAI) offer attention and gradient-based methods for estimating monomeric contributions. However, these methods are primarily applied to classification tasks, such as binding site identification, where they achieve limited accuracy (40–45%) and rely on qualitative evaluations. To address these limitations, we introduce a DL model with interpretable steps, enabling direct tracing of monomeric contributions. Inspired by the masking technique commonly used in vision and natural language processing domains, we propose a new metric <i></i><math><mo>(</mo><mi>I</mi><mo>)</mo></math> for quantitative analysis on datasets mainly containing distinct properties of anticancer peptides (ACP), antimicrobial peptides (AMP), and collagen. Our model exhibits 22% higher explainability than the gradient and attention-based state-of-the-art models, recognizes critical motifs (RRR, RRI, and RSS) that significantly destabilize ACPs, and identifies motifs in AMPs that are 50% more effective in converting non-AMPs to AMPs. These findings highlight the potential of our model in guiding mutation strategies for designing protein-based biomaterials.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 9\",\"pages\":\"4320–4333 4320–4333\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00205\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00205","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
COLOR: A Compositional Linear Operation-Based Representation of Protein Sequences for Identification of Monomer Contributions to Properties
The properties of biological materials like proteins and nucleic acids are largely determined by their primary sequence. Certain segments in the sequence strongly influence specific functions, but identifying these segments, or so-called motifs, is challenging due to the complexity of sequential data. While deep learning (DL) models can accurately capture sequence–property relationships, the degree of nonlinearity in these models limits the assessment of monomer contributions to a property─a critical step in identifying key motifs. Recent advances in explainable AI (XAI) offer attention and gradient-based methods for estimating monomeric contributions. However, these methods are primarily applied to classification tasks, such as binding site identification, where they achieve limited accuracy (40–45%) and rely on qualitative evaluations. To address these limitations, we introduce a DL model with interpretable steps, enabling direct tracing of monomeric contributions. Inspired by the masking technique commonly used in vision and natural language processing domains, we propose a new metric for quantitative analysis on datasets mainly containing distinct properties of anticancer peptides (ACP), antimicrobial peptides (AMP), and collagen. Our model exhibits 22% higher explainability than the gradient and attention-based state-of-the-art models, recognizes critical motifs (RRR, RRI, and RSS) that significantly destabilize ACPs, and identifies motifs in AMPs that are 50% more effective in converting non-AMPs to AMPs. These findings highlight the potential of our model in guiding mutation strategies for designing protein-based biomaterials.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.