金刚石中氮空位光学探测磁共振的热效应:用于研究生教学实验室的量子温度计

IF 2.5 3区 教育学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gustaw Szawioła, Szymon Mieloch, Danuta Stefańska*, Przemysław Głowacki, Agata Frajtak, Jędrzej Michalczyk, Krzysztof Murawski, Andrzej Pruchlat, Jan Raczyński, Michał Schmidt, Jerzy Sobkowski, Maksymilian Wosicki, Andrzej Biadasz, Adam Buczek, Anna Dychalska, Piotr Mazerewicz and Mirosław Szybowicz, 
{"title":"金刚石中氮空位光学探测磁共振的热效应:用于研究生教学实验室的量子温度计","authors":"Gustaw Szawioła,&nbsp;Szymon Mieloch,&nbsp;Danuta Stefańska*,&nbsp;Przemysław Głowacki,&nbsp;Agata Frajtak,&nbsp;Jędrzej Michalczyk,&nbsp;Krzysztof Murawski,&nbsp;Andrzej Pruchlat,&nbsp;Jan Raczyński,&nbsp;Michał Schmidt,&nbsp;Jerzy Sobkowski,&nbsp;Maksymilian Wosicki,&nbsp;Andrzej Biadasz,&nbsp;Adam Buczek,&nbsp;Anna Dychalska,&nbsp;Piotr Mazerewicz and Mirosław Szybowicz,&nbsp;","doi":"10.1021/acs.jchemed.4c0143410.1021/acs.jchemed.4c01434","DOIUrl":null,"url":null,"abstract":"<p >This work reports a study of thermal effects in nitrogen vacancies in diamond using the optically detected continuous wave magnetic resonance (cw-ODMR) method. Changes in the ODMR signal induced by heating the diamond sample with both laser light at various powers and by a simple heater were investigated and analyzed. The influence of heating on the ODMR signal was measured for two types of synthetic diamond powder─a low cost microcrystalline powder (particle diameters ca. 80 μm) and a high purity nanodiamond powder (particle diameters ca. 140 nm). The experimental setup can be viewed as a pedagogical quantum thermometer. A number of cost-effective components were used, e.g., a self-constructed confocal microscope, and the Raspberry Pi 4B microcomputer in an experiment control and data acquisition system, as well as an inexpensive microwave modulator, analog to digital converter, and a heating plate.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"102 5","pages":"1949–1959 1949–1959"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c01434","citationCount":"0","resultStr":"{\"title\":\"Thermal Effects in Optically Detected Magnetic Resonance of Nitrogen Vacancies in Diamond: A Quantum Thermometer for a Graduate Teaching Lab\",\"authors\":\"Gustaw Szawioła,&nbsp;Szymon Mieloch,&nbsp;Danuta Stefańska*,&nbsp;Przemysław Głowacki,&nbsp;Agata Frajtak,&nbsp;Jędrzej Michalczyk,&nbsp;Krzysztof Murawski,&nbsp;Andrzej Pruchlat,&nbsp;Jan Raczyński,&nbsp;Michał Schmidt,&nbsp;Jerzy Sobkowski,&nbsp;Maksymilian Wosicki,&nbsp;Andrzej Biadasz,&nbsp;Adam Buczek,&nbsp;Anna Dychalska,&nbsp;Piotr Mazerewicz and Mirosław Szybowicz,&nbsp;\",\"doi\":\"10.1021/acs.jchemed.4c0143410.1021/acs.jchemed.4c01434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work reports a study of thermal effects in nitrogen vacancies in diamond using the optically detected continuous wave magnetic resonance (cw-ODMR) method. Changes in the ODMR signal induced by heating the diamond sample with both laser light at various powers and by a simple heater were investigated and analyzed. The influence of heating on the ODMR signal was measured for two types of synthetic diamond powder─a low cost microcrystalline powder (particle diameters ca. 80 μm) and a high purity nanodiamond powder (particle diameters ca. 140 nm). The experimental setup can be viewed as a pedagogical quantum thermometer. A number of cost-effective components were used, e.g., a self-constructed confocal microscope, and the Raspberry Pi 4B microcomputer in an experiment control and data acquisition system, as well as an inexpensive microwave modulator, analog to digital converter, and a heating plate.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"102 5\",\"pages\":\"1949–1959 1949–1959\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c01434\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c01434\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c01434","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了利用光学探测连续波磁共振(cw-ODMR)方法研究金刚石中氮空位的热效应。研究和分析了不同功率的激光和简单的加热器加热金刚石样品所引起的ODMR信号的变化。研究了加热对两种合成金刚石粉──低成本微晶金刚石粉(粒径约80 μm)和高纯度纳米金刚石粉(粒径约140 nm)的ODMR信号的影响。实验装置可以看作是一个教学量子温度计。在实验控制和数据采集系统中使用了许多具有成本效益的组件,例如自制的共聚焦显微镜和树莓派4B微型计算机,以及廉价的微波调制器、模数转换器和加热板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Effects in Optically Detected Magnetic Resonance of Nitrogen Vacancies in Diamond: A Quantum Thermometer for a Graduate Teaching Lab

This work reports a study of thermal effects in nitrogen vacancies in diamond using the optically detected continuous wave magnetic resonance (cw-ODMR) method. Changes in the ODMR signal induced by heating the diamond sample with both laser light at various powers and by a simple heater were investigated and analyzed. The influence of heating on the ODMR signal was measured for two types of synthetic diamond powder─a low cost microcrystalline powder (particle diameters ca. 80 μm) and a high purity nanodiamond powder (particle diameters ca. 140 nm). The experimental setup can be viewed as a pedagogical quantum thermometer. A number of cost-effective components were used, e.g., a self-constructed confocal microscope, and the Raspberry Pi 4B microcomputer in an experiment control and data acquisition system, as well as an inexpensive microwave modulator, analog to digital converter, and a heating plate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Education
Journal of Chemical Education 化学-化学综合
CiteScore
5.60
自引率
50.00%
发文量
465
审稿时长
6.5 months
期刊介绍: The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信