{"title":"鲁棒图像质量评估模型的范数正则化训练策略","authors":"Yujia Liu, Chenxi Yang, Dingquan Li, Tingting Jiang, Tiejun Huang","doi":"10.1007/s11263-025-02458-8","DOIUrl":null,"url":null,"abstract":"<p>Image Quality Assessment (IQA) models predict the quality score of input images. They can be categorized into Full-Reference (FR-) and No-Reference (NR-) IQA models based on the availability of reference images. These models are essential for performance evaluation and optimization guidance in the media industry. However, researchers have observed that introducing imperceptible perturbations to input images can notably influence the predicted scores of both FR- and NR-IQA models, resulting in inaccurate assessments of image quality. This phenomenon is known as adversarial attacks. In this paper, we initially define attacks targeted at both FR-IQA and NR-IQA models. Subsequently, we introduce a defense approach applicable to both types of models, aimed at enhancing the stability of predicted scores and boosting the adversarial robustness of IQA models. To be specific, we present theoretical evidence showing that the magnitude of score changes is related to the <span>\\(\\ell _1\\)</span> norm of the model’s gradient with respect to the input image. Building upon this theoretical foundation, we propose a norm regularization training strategy aimed at reducing the <span>\\(\\ell _1\\)</span> norm of the gradient, thereby boosting the robustness of IQA models. Experiments conducted on three FR-IQA and four NR-IQA models demonstrate the effectiveness of our strategy in reducing score changes in the presence of adversarial attacks. To the best of our knowledge, this work marks the first attempt to defend against adversarial attacks on both FR- and NR-IQA models. Our study offers valuable insights into the adversarial robustness of IQA models and provides a foundation for future research in this area.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Norm Regularization Training Strategy for Robust Image Quality Assessment Models\",\"authors\":\"Yujia Liu, Chenxi Yang, Dingquan Li, Tingting Jiang, Tiejun Huang\",\"doi\":\"10.1007/s11263-025-02458-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image Quality Assessment (IQA) models predict the quality score of input images. They can be categorized into Full-Reference (FR-) and No-Reference (NR-) IQA models based on the availability of reference images. These models are essential for performance evaluation and optimization guidance in the media industry. However, researchers have observed that introducing imperceptible perturbations to input images can notably influence the predicted scores of both FR- and NR-IQA models, resulting in inaccurate assessments of image quality. This phenomenon is known as adversarial attacks. In this paper, we initially define attacks targeted at both FR-IQA and NR-IQA models. Subsequently, we introduce a defense approach applicable to both types of models, aimed at enhancing the stability of predicted scores and boosting the adversarial robustness of IQA models. To be specific, we present theoretical evidence showing that the magnitude of score changes is related to the <span>\\\\(\\\\ell _1\\\\)</span> norm of the model’s gradient with respect to the input image. Building upon this theoretical foundation, we propose a norm regularization training strategy aimed at reducing the <span>\\\\(\\\\ell _1\\\\)</span> norm of the gradient, thereby boosting the robustness of IQA models. Experiments conducted on three FR-IQA and four NR-IQA models demonstrate the effectiveness of our strategy in reducing score changes in the presence of adversarial attacks. To the best of our knowledge, this work marks the first attempt to defend against adversarial attacks on both FR- and NR-IQA models. Our study offers valuable insights into the adversarial robustness of IQA models and provides a foundation for future research in this area.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02458-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02458-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Norm Regularization Training Strategy for Robust Image Quality Assessment Models
Image Quality Assessment (IQA) models predict the quality score of input images. They can be categorized into Full-Reference (FR-) and No-Reference (NR-) IQA models based on the availability of reference images. These models are essential for performance evaluation and optimization guidance in the media industry. However, researchers have observed that introducing imperceptible perturbations to input images can notably influence the predicted scores of both FR- and NR-IQA models, resulting in inaccurate assessments of image quality. This phenomenon is known as adversarial attacks. In this paper, we initially define attacks targeted at both FR-IQA and NR-IQA models. Subsequently, we introduce a defense approach applicable to both types of models, aimed at enhancing the stability of predicted scores and boosting the adversarial robustness of IQA models. To be specific, we present theoretical evidence showing that the magnitude of score changes is related to the \(\ell _1\) norm of the model’s gradient with respect to the input image. Building upon this theoretical foundation, we propose a norm regularization training strategy aimed at reducing the \(\ell _1\) norm of the gradient, thereby boosting the robustness of IQA models. Experiments conducted on three FR-IQA and four NR-IQA models demonstrate the effectiveness of our strategy in reducing score changes in the presence of adversarial attacks. To the best of our knowledge, this work marks the first attempt to defend against adversarial attacks on both FR- and NR-IQA models. Our study offers valuable insights into the adversarial robustness of IQA models and provides a foundation for future research in this area.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.