li型有限单群作为共轭子集积的写法

IF 1 2区 数学 Q1 MATHEMATICS
Daniele Dona
{"title":"li型有限单群作为共轭子集积的写法","authors":"Daniele Dona","doi":"10.1007/s00493-025-00155-1","DOIUrl":null,"url":null,"abstract":"<p>The Liebeck–Nikolov–Shalev conjecture (Bull Lond Math Soc 44(3):469–472, 2012) asserts that, for any finite simple non-abelian group <i>G</i> and any set <span>\\(A\\subseteq G\\)</span> with <span>\\(|A|\\ge 2\\)</span>, <i>G</i> is the product of at most <span>\\(N\\frac{\\log |G|}{\\log |A|}\\)</span> conjugates of <i>A</i>, for some absolute constant <i>N</i>. For <i>G</i> of Lie type, we prove that for any <span>\\(\\varepsilon &gt;0\\)</span> there is some <span>\\(N_{\\varepsilon }\\)</span> for which <i>G</i> is the product of at most <span>\\(N_{\\varepsilon }\\left( \\frac{\\log |G|}{\\log |A|}\\right) ^{1+\\varepsilon }\\)</span> conjugates of either <i>A</i> or <span>\\(A^{-1}\\)</span>. For symmetric sets, this improves on results of Liebeck et al. (2012) and Gill et al. (Groups Geom Dyn 7(4):867–882, 2013). During the preparation of this paper, the proof of the Liebeck–Nikolov–Shalev conjecture was completed by Lifshitz (Completing the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.10127). Both papers use Gill et al. (Initiating the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.07800) as a starting point. Lifshitz’s argument uses heavy machinery from representation theory to complete the conjecture, whereas this paper achieves a more modest result by rather elementary combinatorial arguments.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Writing Finite Simple Groups of Lie Type as Products of Subset Conjugates\",\"authors\":\"Daniele Dona\",\"doi\":\"10.1007/s00493-025-00155-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Liebeck–Nikolov–Shalev conjecture (Bull Lond Math Soc 44(3):469–472, 2012) asserts that, for any finite simple non-abelian group <i>G</i> and any set <span>\\\\(A\\\\subseteq G\\\\)</span> with <span>\\\\(|A|\\\\ge 2\\\\)</span>, <i>G</i> is the product of at most <span>\\\\(N\\\\frac{\\\\log |G|}{\\\\log |A|}\\\\)</span> conjugates of <i>A</i>, for some absolute constant <i>N</i>. For <i>G</i> of Lie type, we prove that for any <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> there is some <span>\\\\(N_{\\\\varepsilon }\\\\)</span> for which <i>G</i> is the product of at most <span>\\\\(N_{\\\\varepsilon }\\\\left( \\\\frac{\\\\log |G|}{\\\\log |A|}\\\\right) ^{1+\\\\varepsilon }\\\\)</span> conjugates of either <i>A</i> or <span>\\\\(A^{-1}\\\\)</span>. For symmetric sets, this improves on results of Liebeck et al. (2012) and Gill et al. (Groups Geom Dyn 7(4):867–882, 2013). During the preparation of this paper, the proof of the Liebeck–Nikolov–Shalev conjecture was completed by Lifshitz (Completing the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.10127). Both papers use Gill et al. (Initiating the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.07800) as a starting point. Lifshitz’s argument uses heavy machinery from representation theory to complete the conjecture, whereas this paper achieves a more modest result by rather elementary combinatorial arguments.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00155-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00155-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Liebeck-Nikolov-Shalev猜想(数学学报44(3):469-472,2012)断言,对于任何有限简单非阿贝尔群G和任何集合 \(A\subseteq G\) 有 \(|A|\ge 2\), G是最大值的乘积 \(N\frac{\log |G|}{\log |A|}\) A的共轭,对于某个绝对常数n,对于Lie型的G,我们证明对于任何 \(\varepsilon >0\) 有一些 \(N_{\varepsilon }\) 其中G最多是和的乘积 \(N_{\varepsilon }\left( \frac{\log |G|}{\log |A|}\right) ^{1+\varepsilon }\) A或的共轭 \(A^{-1}\)。对于对称集,这改进了Liebeck等人(2012)和Gill等人(Groups Geom Dyn 7(4): 867-882, 2013)的结果。在本文准备过程中,Lifshitz完成了Liebeck-Nikolov-Shalev猜想的证明(completion the proof of the Liebeck-Nikolov-Shalev猜想,2024,https://arxiv.org/abs/2408.10127)。两篇论文都使用Gill等人(发起Liebeck-Nikolov-Shalev猜想的证明,2024,https://arxiv.org/abs/2408.07800)作为起点。Lifshitz的论证使用了来自表示理论的重型机器来完成猜想,而本文通过相当基本的组合论证获得了更温和的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Writing Finite Simple Groups of Lie Type as Products of Subset Conjugates

The Liebeck–Nikolov–Shalev conjecture (Bull Lond Math Soc 44(3):469–472, 2012) asserts that, for any finite simple non-abelian group G and any set \(A\subseteq G\) with \(|A|\ge 2\), G is the product of at most \(N\frac{\log |G|}{\log |A|}\) conjugates of A, for some absolute constant N. For G of Lie type, we prove that for any \(\varepsilon >0\) there is some \(N_{\varepsilon }\) for which G is the product of at most \(N_{\varepsilon }\left( \frac{\log |G|}{\log |A|}\right) ^{1+\varepsilon }\) conjugates of either A or \(A^{-1}\). For symmetric sets, this improves on results of Liebeck et al. (2012) and Gill et al. (Groups Geom Dyn 7(4):867–882, 2013). During the preparation of this paper, the proof of the Liebeck–Nikolov–Shalev conjecture was completed by Lifshitz (Completing the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.10127). Both papers use Gill et al. (Initiating the proof of the Liebeck–Nikolov–Shalev conjecture, 2024, https://arxiv.org/abs/2408.07800) as a starting point. Lifshitz’s argument uses heavy machinery from representation theory to complete the conjecture, whereas this paper achieves a more modest result by rather elementary combinatorial arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信