{"title":"用量子统计查询学习量子过程","authors":"Chirag Wadhwa, Mina Doosti","doi":"10.22331/q-2025-05-12-1739","DOIUrl":null,"url":null,"abstract":"In this work, we initiate the study of learning quantum processes from quantum statistical queries. We focus on two fundamental learning tasks in this new access model: shadow tomography of quantum processes and process tomography with respect to diamond distance. For the former, we present an efficient average-case algorithm along with a nearly matching lower bound with respect to the number of observables to be predicted. For the latter, we present average-case query complexity lower bounds for learning classes of unitaries. We obtain an exponential lower bound for learning unitary 2-designs and a doubly exponential lower bound for Haar-random unitaries. Finally, we demonstrate the practical relevance of our access model by applying our learning algorithm to attack an authentication protocol using Classical-Readout Quantum Physically Unclonable Functions, partially addressing an important open question in quantum hardware security.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Quantum Processes with Quantum Statistical Queries\",\"authors\":\"Chirag Wadhwa, Mina Doosti\",\"doi\":\"10.22331/q-2025-05-12-1739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we initiate the study of learning quantum processes from quantum statistical queries. We focus on two fundamental learning tasks in this new access model: shadow tomography of quantum processes and process tomography with respect to diamond distance. For the former, we present an efficient average-case algorithm along with a nearly matching lower bound with respect to the number of observables to be predicted. For the latter, we present average-case query complexity lower bounds for learning classes of unitaries. We obtain an exponential lower bound for learning unitary 2-designs and a doubly exponential lower bound for Haar-random unitaries. Finally, we demonstrate the practical relevance of our access model by applying our learning algorithm to attack an authentication protocol using Classical-Readout Quantum Physically Unclonable Functions, partially addressing an important open question in quantum hardware security.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-12-1739\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-12-1739","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Learning Quantum Processes with Quantum Statistical Queries
In this work, we initiate the study of learning quantum processes from quantum statistical queries. We focus on two fundamental learning tasks in this new access model: shadow tomography of quantum processes and process tomography with respect to diamond distance. For the former, we present an efficient average-case algorithm along with a nearly matching lower bound with respect to the number of observables to be predicted. For the latter, we present average-case query complexity lower bounds for learning classes of unitaries. We obtain an exponential lower bound for learning unitary 2-designs and a doubly exponential lower bound for Haar-random unitaries. Finally, we demonstrate the practical relevance of our access model by applying our learning algorithm to attack an authentication protocol using Classical-Readout Quantum Physically Unclonable Functions, partially addressing an important open question in quantum hardware security.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.