适应气体发酵细菌光驱动的多米诺效应CO2

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin Su, Santiago Rodríguez-Jiménez, Marion I. M. Short, Erwin Reisner
{"title":"适应气体发酵细菌光驱动的多米诺效应CO2","authors":"Lin Su, Santiago Rodríguez-Jiménez, Marion I. M. Short, Erwin Reisner","doi":"10.1039/d5sc00764j","DOIUrl":null,"url":null,"abstract":"The solar-driven valorization of CO<small><sub>2</sub></small> to fuels and chemicals provides an exciting opportunity to develop a circular chemical industry, but the controlled production of multicarbon organics remains a major challenge. Here, we present an abiotic-biotic domino strategy that integrates a photocatalytic CO₂-to-syngas conversion system with evolved syngas-fermenting bacteria to enable the upcycling of CO₂ into valuable C₂ products, including acetate and ethanol. To optimize microbial syngas fermentation through an accessible and chemist-friendly platform, we employ adaptive laboratory evolution (ALE) of <em>Clostridium ljungdahlii</em> (<em>Cl</em>). The adapted strain, <em>Cl</em><small><sub>adapt</sub></small>, exhibits a 2.5-fold increase in growth rate and a 120-fold enhancement in C₂ production compared to the wild-type (<em>Cl</em><small><sub>wt</sub></small>). Isotopic labeling confirmed <em>Cl</em><small><sub>adapt</sub></small>'s high conversion efficiency, yielding 6:1 and 9:1 ratios of ¹³C:¹²C in acetate and ethanol, respectively. Whole genome sequencing revealed eight unique mutations in <em>Cl</em><small><sub>adapt</sub></small>, whereas RNA-seq identified significant alterations in gene expression, shedding light on its enhanced metabolism. A scaled-up semiconductor-molecule hybrid photocatalyst, TiO₂|phosphonated Co(terpyridine)₂, was employed to generate sufficient syngas (CO/H<small><sub>2 </sub></small>ratio: ~30:70 with 1.3 mmol of CO after 6 days) for <em>Cl</em><small><sub>adapt</sub></small> to demonstrate photocatalytic CO<small><sub>2</sub></small>®syngas®C<small><sub>2</sub></small> conversion (yielding 0.46 ± 0.07 mM, or 3.2 µmol, of acetate). This study offers a streamlined approach to improving syngas fermentation in <em>Cl</em>, insights into microbial adaptability, and an ALE-guided pathway for solar-powered CO₂ upcycling using an inorganic-microbial domino strategy.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"2 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting Gas Fermenting Bacteria for Light-driven Domino Valorization of CO2\",\"authors\":\"Lin Su, Santiago Rodríguez-Jiménez, Marion I. M. Short, Erwin Reisner\",\"doi\":\"10.1039/d5sc00764j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solar-driven valorization of CO<small><sub>2</sub></small> to fuels and chemicals provides an exciting opportunity to develop a circular chemical industry, but the controlled production of multicarbon organics remains a major challenge. Here, we present an abiotic-biotic domino strategy that integrates a photocatalytic CO₂-to-syngas conversion system with evolved syngas-fermenting bacteria to enable the upcycling of CO₂ into valuable C₂ products, including acetate and ethanol. To optimize microbial syngas fermentation through an accessible and chemist-friendly platform, we employ adaptive laboratory evolution (ALE) of <em>Clostridium ljungdahlii</em> (<em>Cl</em>). The adapted strain, <em>Cl</em><small><sub>adapt</sub></small>, exhibits a 2.5-fold increase in growth rate and a 120-fold enhancement in C₂ production compared to the wild-type (<em>Cl</em><small><sub>wt</sub></small>). Isotopic labeling confirmed <em>Cl</em><small><sub>adapt</sub></small>'s high conversion efficiency, yielding 6:1 and 9:1 ratios of ¹³C:¹²C in acetate and ethanol, respectively. Whole genome sequencing revealed eight unique mutations in <em>Cl</em><small><sub>adapt</sub></small>, whereas RNA-seq identified significant alterations in gene expression, shedding light on its enhanced metabolism. A scaled-up semiconductor-molecule hybrid photocatalyst, TiO₂|phosphonated Co(terpyridine)₂, was employed to generate sufficient syngas (CO/H<small><sub>2 </sub></small>ratio: ~30:70 with 1.3 mmol of CO after 6 days) for <em>Cl</em><small><sub>adapt</sub></small> to demonstrate photocatalytic CO<small><sub>2</sub></small>®syngas®C<small><sub>2</sub></small> conversion (yielding 0.46 ± 0.07 mM, or 3.2 µmol, of acetate). This study offers a streamlined approach to improving syngas fermentation in <em>Cl</em>, insights into microbial adaptability, and an ALE-guided pathway for solar-powered CO₂ upcycling using an inorganic-microbial domino strategy.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc00764j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00764j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的二氧化碳向燃料和化学品的增值为发展循环化学工业提供了一个令人兴奋的机会,但多碳有机物的受控生产仍然是一个主要挑战。在这里,我们提出了一种非生物-生物多米诺骨牌策略,将光催化CO 2到合成气的转化系统与进化的合成气发酵细菌结合起来,使CO 2升级为有价值的C 2产品,包括乙酸和乙醇。为了优化微生物合成气发酵,通过一个可访问的和化学家友好的平台,我们采用适应性实验室进化(ALE)的ljungdahlii (Cl)。与野生型(Clwt)相比,适应菌株Cladapt的生长速度提高了2.5倍,二氧化碳产量提高了120倍。同位素标记证实了Cladapt的高转化效率,在乙酸和乙醇中,¹³C:¹²C的比例分别为6:1和9:1。全基因组测序揭示了Cladapt的8个独特突变,而RNA-seq鉴定了基因表达的显著改变,揭示了其增强的代谢。采用放大型半导体-分子杂化光催化剂tio_2 |磷酸Co(三联吡啶)_2生成足够的合成气(Co /H2比:~30:70,6天后Co浓度为1.3 mmol),用于Cladapt光催化CO2®合成气®C2转化(产0.46±0.07 mM,或3.2µmol乙酸)。这项研究提供了一种简化的方法来改善Cl中的合成气发酵,深入了解微生物的适应性,以及利用无机-微生物多米诺骨牌策略,利用ale引导太阳能CO₂升级循环的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Gas Fermenting Bacteria for Light-driven Domino Valorization of CO2
The solar-driven valorization of CO2 to fuels and chemicals provides an exciting opportunity to develop a circular chemical industry, but the controlled production of multicarbon organics remains a major challenge. Here, we present an abiotic-biotic domino strategy that integrates a photocatalytic CO₂-to-syngas conversion system with evolved syngas-fermenting bacteria to enable the upcycling of CO₂ into valuable C₂ products, including acetate and ethanol. To optimize microbial syngas fermentation through an accessible and chemist-friendly platform, we employ adaptive laboratory evolution (ALE) of Clostridium ljungdahlii (Cl). The adapted strain, Cladapt, exhibits a 2.5-fold increase in growth rate and a 120-fold enhancement in C₂ production compared to the wild-type (Clwt). Isotopic labeling confirmed Cladapt's high conversion efficiency, yielding 6:1 and 9:1 ratios of ¹³C:¹²C in acetate and ethanol, respectively. Whole genome sequencing revealed eight unique mutations in Cladapt, whereas RNA-seq identified significant alterations in gene expression, shedding light on its enhanced metabolism. A scaled-up semiconductor-molecule hybrid photocatalyst, TiO₂|phosphonated Co(terpyridine)₂, was employed to generate sufficient syngas (CO/H2 ratio: ~30:70 with 1.3 mmol of CO after 6 days) for Cladapt to demonstrate photocatalytic CO2®syngas®C2 conversion (yielding 0.46 ± 0.07 mM, or 3.2 µmol, of acetate). This study offers a streamlined approach to improving syngas fermentation in Cl, insights into microbial adaptability, and an ALE-guided pathway for solar-powered CO₂ upcycling using an inorganic-microbial domino strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信