基于非富勒烯受体的半透明有机太阳能电池的强化学习方法

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Erman Cokduygulular, Muhammed Yusuf Aykut, Caglar Cetinkaya
{"title":"基于非富勒烯受体的半透明有机太阳能电池的强化学习方法","authors":"Erman Cokduygulular, Muhammed Yusuf Aykut, Caglar Cetinkaya","doi":"10.1002/adts.202500334","DOIUrl":null,"url":null,"abstract":"This study uses deep Q-learning reinforcement learning to introduce a novel optimization framework for semi-transparent organic solar cells (ST-OSCs). This approach integrates the Transfer Matrix Method with artificial intelligence to streamline design processes by addressing the dual challenge of achieving high visible light transparency and efficient photovoltaic performance. The research focuses on PBDB-T:ITIC-based active layers coupled with asymmetrical dielectric-metal-dielectric transparent contacts, optimizing layer thicknesses and material properties. The deep Q-learning algorithm efficiently navigates the complex design space, achieving a maximum average visible transmittance of 48.97% while maintaining strong photo-current density. This optimization balances transparency and absorption, which are critical for ST-OSCs, by reducing reflection losses and enhancing photon management. The study demonstrates the effectiveness of reinforcement learning in handling intricate multi-layer ST-OSCs, surpassing traditional optimization techniques. Results highlight the potential of adaptive learning algorithms in identifying high-performance material configurations, minimizing computational costs, and ensuring precision. This work underscores the transformative role of AI in renewable energy technologies, offering scalable, sustainable solutions to modern energy challenges. By advancing the integration of artificial intelligence and material science, this study opens new pathways for optimizing renewable energy technologies and improving the performance of optoelectronic devices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"51 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning Approach to Advance Non-Fullerene Acceptor-Based Semi-Transparent Organic Solar Cell\",\"authors\":\"Erman Cokduygulular, Muhammed Yusuf Aykut, Caglar Cetinkaya\",\"doi\":\"10.1002/adts.202500334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses deep Q-learning reinforcement learning to introduce a novel optimization framework for semi-transparent organic solar cells (ST-OSCs). This approach integrates the Transfer Matrix Method with artificial intelligence to streamline design processes by addressing the dual challenge of achieving high visible light transparency and efficient photovoltaic performance. The research focuses on PBDB-T:ITIC-based active layers coupled with asymmetrical dielectric-metal-dielectric transparent contacts, optimizing layer thicknesses and material properties. The deep Q-learning algorithm efficiently navigates the complex design space, achieving a maximum average visible transmittance of 48.97% while maintaining strong photo-current density. This optimization balances transparency and absorption, which are critical for ST-OSCs, by reducing reflection losses and enhancing photon management. The study demonstrates the effectiveness of reinforcement learning in handling intricate multi-layer ST-OSCs, surpassing traditional optimization techniques. Results highlight the potential of adaptive learning algorithms in identifying high-performance material configurations, minimizing computational costs, and ensuring precision. This work underscores the transformative role of AI in renewable energy technologies, offering scalable, sustainable solutions to modern energy challenges. By advancing the integration of artificial intelligence and material science, this study opens new pathways for optimizing renewable energy technologies and improving the performance of optoelectronic devices.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500334\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500334","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用深度q -学习强化学习来引入半透明有机太阳能电池(ST-OSCs)的新型优化框架。这种方法将传递矩阵法与人工智能相结合,通过解决实现高可见光透明度和高效光伏性能的双重挑战来简化设计过程。研究重点是基于PBDB-T: itic的有源层与不对称介电-金属介电透明接触,优化层厚度和材料性能。深度q -学习算法有效地导航复杂的设计空间,在保持强光电流密度的同时,实现了48.97%的最大平均可见光透过率。这种优化通过减少反射损失和增强光子管理来平衡透明度和吸收,这对ST-OSCs至关重要。该研究证明了强化学习在处理复杂多层ST-OSCs方面的有效性,超越了传统的优化技术。结果强调了自适应学习算法在识别高性能材料配置、最小化计算成本和确保精度方面的潜力。这项工作强调了人工智能在可再生能源技术中的变革作用,为现代能源挑战提供了可扩展的、可持续的解决方案。通过推进人工智能与材料科学的融合,本研究为优化可再生能源技术和提高光电器件性能开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reinforcement Learning Approach to Advance Non-Fullerene Acceptor-Based Semi-Transparent Organic Solar Cell

Reinforcement Learning Approach to Advance Non-Fullerene Acceptor-Based Semi-Transparent Organic Solar Cell
This study uses deep Q-learning reinforcement learning to introduce a novel optimization framework for semi-transparent organic solar cells (ST-OSCs). This approach integrates the Transfer Matrix Method with artificial intelligence to streamline design processes by addressing the dual challenge of achieving high visible light transparency and efficient photovoltaic performance. The research focuses on PBDB-T:ITIC-based active layers coupled with asymmetrical dielectric-metal-dielectric transparent contacts, optimizing layer thicknesses and material properties. The deep Q-learning algorithm efficiently navigates the complex design space, achieving a maximum average visible transmittance of 48.97% while maintaining strong photo-current density. This optimization balances transparency and absorption, which are critical for ST-OSCs, by reducing reflection losses and enhancing photon management. The study demonstrates the effectiveness of reinforcement learning in handling intricate multi-layer ST-OSCs, surpassing traditional optimization techniques. Results highlight the potential of adaptive learning algorithms in identifying high-performance material configurations, minimizing computational costs, and ensuring precision. This work underscores the transformative role of AI in renewable energy technologies, offering scalable, sustainable solutions to modern energy challenges. By advancing the integration of artificial intelligence and material science, this study opens new pathways for optimizing renewable energy technologies and improving the performance of optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信