van der Waal 's CrI3/VI3异质结构应变相关的电子、磁性和光学性质:第一性原理研究

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Fazle Subhan, Luqman Ali, Nasir Shehzad, Yanguang Zhou, Zhenzhen Qin and Guangzhao Qin
{"title":"van der Waal 's CrI3/VI3异质结构应变相关的电子、磁性和光学性质:第一性原理研究","authors":"Fazle Subhan, Luqman Ali, Nasir Shehzad, Yanguang Zhou, Zhenzhen Qin and Guangzhao Qin","doi":"10.1039/D5CP00648A","DOIUrl":null,"url":null,"abstract":"<p >Strain engineering can induce remarkable changes in the intrinsic properties of parent two-dimensional (2D) materials. In this study we perform first-principles calculations to investigate the effects of both tensile and compressive strain on the different properties of a 2D ferromagnetic (FM) van der Waals (vdW) CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure material, where the energetically more stable AB stacking is used. Interestingly, tensile strain enhances the FM ground state, while compressive strain reduces the FM properties. Besides, we report a substantial improvement in the magnetic, electronic and valleytronics properties of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure. Interestingly, the ferromagnetism of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure remains unchanged under biaxial strain. We also used Monte Carlo simulations to investigate the biaxial strain effect above the Curie temperature. Including spin–orbit coupling (SOC), we found a peculiar change in the band structure. Besides, the SOC effect causes a splitting of bands at the high-symmetry points <em>K</em> and <em>K</em>′, which results in a large change in the valleytronics but also reduces the band gap of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure subsequently with biaxial strain. At the end we also investigated the optical properties. Therefore, our findings suggest new design strategies for constructing a FM CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> vdW heterostructure for prominent valleytronics, opto-electronic and spintronic device applications.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 22","pages":" 11811-11820"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-dependent electronic, magnetic, and optical properties of a van der Waals CrI3/VI3 heterostructure: a first principles study†\",\"authors\":\"Fazle Subhan, Luqman Ali, Nasir Shehzad, Yanguang Zhou, Zhenzhen Qin and Guangzhao Qin\",\"doi\":\"10.1039/D5CP00648A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Strain engineering can induce remarkable changes in the intrinsic properties of parent two-dimensional (2D) materials. In this study we perform first-principles calculations to investigate the effects of both tensile and compressive strain on the different properties of a 2D ferromagnetic (FM) van der Waals (vdW) CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure material, where the energetically more stable AB stacking is used. Interestingly, tensile strain enhances the FM ground state, while compressive strain reduces the FM properties. Besides, we report a substantial improvement in the magnetic, electronic and valleytronics properties of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure. Interestingly, the ferromagnetism of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure remains unchanged under biaxial strain. We also used Monte Carlo simulations to investigate the biaxial strain effect above the Curie temperature. Including spin–orbit coupling (SOC), we found a peculiar change in the band structure. Besides, the SOC effect causes a splitting of bands at the high-symmetry points <em>K</em> and <em>K</em>′, which results in a large change in the valleytronics but also reduces the band gap of the vdW CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> heterostructure subsequently with biaxial strain. At the end we also investigated the optical properties. Therefore, our findings suggest new design strategies for constructing a FM CrI<small><sub>3</sub></small>/VI<small><sub>3</sub></small> vdW heterostructure for prominent valleytronics, opto-electronic and spintronic device applications.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 22\",\"pages\":\" 11811-11820\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00648a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00648a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

应变工程可以引起母材二维(2D)材料内在特性的显著变化。在这项研究中,我们进行了第一次主要计算,以研究拉伸和压缩应变对二维铁磁范德华(vdW) CrI3/VI3异质结构材料不同性能的影响。我们深入研究了双分子层的不同堆叠方式,发现AC堆叠比AA和AB堆叠在能量上更稳定。拉伸应变增强了铁磁性基态,而压缩应变则降低了铁磁性。此外,在目前的研究中,我们报道了vdW CrI3/VI3异质结构的磁性,电子和谷电子性能的大幅增强。有趣的是,在双轴应变下,CrI3/VI3异质结构的铁磁性保持不变。我们还利用蒙特卡罗模拟研究了双轴应变随居里温度的变化。包括自旋轨道耦合(SOC)在内,我们发现了带结构的特殊变化。此外,SOC效应在高对称点K和K′处引起能带分裂,导致谷电子的高变化,但也减小了CrI3/VI3异质结构在双轴应变下的带隙。最后我们还研究了其光学性质。因此,我们的研究结果为构建铁磁vdW CrI3/VI3异质结构提供了新的设计策略,用于突出的谷电子,光电和自旋电子器件应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-dependent electronic, magnetic, and optical properties of a van der Waals CrI3/VI3 heterostructure: a first principles study†

Strain-dependent electronic, magnetic, and optical properties of a van der Waals CrI3/VI3 heterostructure: a first principles study†

Strain engineering can induce remarkable changes in the intrinsic properties of parent two-dimensional (2D) materials. In this study we perform first-principles calculations to investigate the effects of both tensile and compressive strain on the different properties of a 2D ferromagnetic (FM) van der Waals (vdW) CrI3/VI3 heterostructure material, where the energetically more stable AB stacking is used. Interestingly, tensile strain enhances the FM ground state, while compressive strain reduces the FM properties. Besides, we report a substantial improvement in the magnetic, electronic and valleytronics properties of the vdW CrI3/VI3 heterostructure. Interestingly, the ferromagnetism of the vdW CrI3/VI3 heterostructure remains unchanged under biaxial strain. We also used Monte Carlo simulations to investigate the biaxial strain effect above the Curie temperature. Including spin–orbit coupling (SOC), we found a peculiar change in the band structure. Besides, the SOC effect causes a splitting of bands at the high-symmetry points K and K′, which results in a large change in the valleytronics but also reduces the band gap of the vdW CrI3/VI3 heterostructure subsequently with biaxial strain. At the end we also investigated the optical properties. Therefore, our findings suggest new design strategies for constructing a FM CrI3/VI3 vdW heterostructure for prominent valleytronics, opto-electronic and spintronic device applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信