Meng Ding,Yun Zhang,Xiaoting Xu,Yuan Zhu,Hui He,Tianyu Jiang,Yashuang Huang,Wenfeng Yu,Hailong Ou
{"title":"酸性鞘磷脂酶招募棕榈酰化CD36到膜筏并增强脂质摄取。","authors":"Meng Ding,Yun Zhang,Xiaoting Xu,Yuan Zhu,Hui He,Tianyu Jiang,Yashuang Huang,Wenfeng Yu,Hailong Ou","doi":"10.1016/j.jbc.2025.110213","DOIUrl":null,"url":null,"abstract":"CD36 palmitoylation increases its membrane localization and is required for CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL). Acid sphingomyelinase (ASMase) is transported to the plasma membrane, where it promotes lipid raft clustering, facilitating membrane protein anchoring for biological functions. We here investigated the effects of oxLDL on CD36 palmitoylation and explored the role of ASMase in CD36 membrane translocation. We found that oxLDL increased CD36 palmitoylation and drives its intracellular trafficking from the endoplasmic reticulum to plasma membrane lipid rafts in macrophages. Affinity purification followed by mass spectrometry analysis identified CD36 bound to ASMase in plasma membrane. The CD36/ASMase binding was enhanced by oxLDL treatment. Genetic ablation and pharmacological inhibition of ASMase reduced CD36 recruitment to lipid rafts, and inhibited CD36 intracellular signaling and lipid uptake. Moreover, inhibiting Sortilin to block ASMase intracellular trafficking and reduce membrane ASMase also caused a sharp decrease in amount of membrane CD36. In addition, ASMase overexpression dramatically promoted palmitoylated CD36 membrane localization but not CD36 without palmitoylation, in which the modification was inhibited by 2-bromopalmitate (2-BP) treatment or point mutation at the palmitoylation site. Moreover, ASMase knockout inhibited CD36 membrane recruitment both in peritoneal macrophages and in aorta, and attenuated lipid accumulation in atherosclerotic plaques in mice. Finally, we found oxLDL activated extracellular signal-regulated kinase1/2 (ERK1/2)/specificity protein (SP1) signaling, upregulating ASMase transcription and promoting sphingomyelin catabolism. Therefore, these data demonstrate that ASMase expression induced by oxLDL is required for palmitoylated CD36 membrane translocation during foam cell formation in macrophages.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"13 1","pages":"110213"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid sphingomyelinase recruits palmitoylated CD36 to membrane rafts and enhances lipid uptake.\",\"authors\":\"Meng Ding,Yun Zhang,Xiaoting Xu,Yuan Zhu,Hui He,Tianyu Jiang,Yashuang Huang,Wenfeng Yu,Hailong Ou\",\"doi\":\"10.1016/j.jbc.2025.110213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CD36 palmitoylation increases its membrane localization and is required for CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL). Acid sphingomyelinase (ASMase) is transported to the plasma membrane, where it promotes lipid raft clustering, facilitating membrane protein anchoring for biological functions. We here investigated the effects of oxLDL on CD36 palmitoylation and explored the role of ASMase in CD36 membrane translocation. We found that oxLDL increased CD36 palmitoylation and drives its intracellular trafficking from the endoplasmic reticulum to plasma membrane lipid rafts in macrophages. Affinity purification followed by mass spectrometry analysis identified CD36 bound to ASMase in plasma membrane. The CD36/ASMase binding was enhanced by oxLDL treatment. Genetic ablation and pharmacological inhibition of ASMase reduced CD36 recruitment to lipid rafts, and inhibited CD36 intracellular signaling and lipid uptake. Moreover, inhibiting Sortilin to block ASMase intracellular trafficking and reduce membrane ASMase also caused a sharp decrease in amount of membrane CD36. In addition, ASMase overexpression dramatically promoted palmitoylated CD36 membrane localization but not CD36 without palmitoylation, in which the modification was inhibited by 2-bromopalmitate (2-BP) treatment or point mutation at the palmitoylation site. Moreover, ASMase knockout inhibited CD36 membrane recruitment both in peritoneal macrophages and in aorta, and attenuated lipid accumulation in atherosclerotic plaques in mice. Finally, we found oxLDL activated extracellular signal-regulated kinase1/2 (ERK1/2)/specificity protein (SP1) signaling, upregulating ASMase transcription and promoting sphingomyelin catabolism. Therefore, these data demonstrate that ASMase expression induced by oxLDL is required for palmitoylated CD36 membrane translocation during foam cell formation in macrophages.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"13 1\",\"pages\":\"110213\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110213\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110213","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Acid sphingomyelinase recruits palmitoylated CD36 to membrane rafts and enhances lipid uptake.
CD36 palmitoylation increases its membrane localization and is required for CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL). Acid sphingomyelinase (ASMase) is transported to the plasma membrane, where it promotes lipid raft clustering, facilitating membrane protein anchoring for biological functions. We here investigated the effects of oxLDL on CD36 palmitoylation and explored the role of ASMase in CD36 membrane translocation. We found that oxLDL increased CD36 palmitoylation and drives its intracellular trafficking from the endoplasmic reticulum to plasma membrane lipid rafts in macrophages. Affinity purification followed by mass spectrometry analysis identified CD36 bound to ASMase in plasma membrane. The CD36/ASMase binding was enhanced by oxLDL treatment. Genetic ablation and pharmacological inhibition of ASMase reduced CD36 recruitment to lipid rafts, and inhibited CD36 intracellular signaling and lipid uptake. Moreover, inhibiting Sortilin to block ASMase intracellular trafficking and reduce membrane ASMase also caused a sharp decrease in amount of membrane CD36. In addition, ASMase overexpression dramatically promoted palmitoylated CD36 membrane localization but not CD36 without palmitoylation, in which the modification was inhibited by 2-bromopalmitate (2-BP) treatment or point mutation at the palmitoylation site. Moreover, ASMase knockout inhibited CD36 membrane recruitment both in peritoneal macrophages and in aorta, and attenuated lipid accumulation in atherosclerotic plaques in mice. Finally, we found oxLDL activated extracellular signal-regulated kinase1/2 (ERK1/2)/specificity protein (SP1) signaling, upregulating ASMase transcription and promoting sphingomyelin catabolism. Therefore, these data demonstrate that ASMase expression induced by oxLDL is required for palmitoylated CD36 membrane translocation during foam cell formation in macrophages.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.