Suzanne L Warring,Hazel M Sisson,George Randall,Dennis Grimon,Dorien Dams,Diana Gutiérrez,Matthias Fellner,Robert D Fagerlund,Yves Briers,Simon A Jackson,Peter C Fineran
{"title":"设计一种靶向植物病原体丁香假单胞菌的抗微生物嵌合内溶素。actinidiae。","authors":"Suzanne L Warring,Hazel M Sisson,George Randall,Dennis Grimon,Dorien Dams,Diana Gutiérrez,Matthias Fellner,Robert D Fagerlund,Yves Briers,Simon A Jackson,Peter C Fineran","doi":"10.1016/j.jbc.2025.110224","DOIUrl":null,"url":null,"abstract":"Global food shortages and rising antimicrobial resistance require alternatives to antibiotics and agrichemicals for the management of agricultural bacterial pathogens. The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of kiwifruit canker and is responsible for major agricultural losses. Bacteriophage enzymes present an emerging antimicrobial option. Endolysins possess the ability to cleave peptidoglycan and are effective antimicrobials against gram-positive bacteria. Delivery of endolysins to the peptidoglycan of gram-negatives is impeded by the additional outer membrane. To overcome this barrier, we used VersaTile molecular shuffling to produce Psa-targeting chimeric proteins which were tested for antimicrobial activity. These chimeras consist of endolysins linked by polypeptides to diverse phage proteins mined from Psa phage genomes. A preferential configuration for antibacterial activity was observed for enzymatic domains at the N-terminus and alternative phage proteins at the C-terminus. The lead variant possessed an N-terminal modular endolysin and a C-terminal lipase. Antibacterial activity was enhanced with the addition of the chemical permeabilizers citric acid or EDTA. Mutagenesis of the lipase active site eliminated exogenous antibacterial activity towards Psa. The endolysin-lipase chimera demonstrated specificity towards Psa, illustrating potential as a targeted biocontrol agent. Overall, we generated a chimeric endolysin with exogenous and specific activity towards Psa, the causative agent of kiwifruit canker.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"4 1","pages":"110224"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering an antimicrobial chimeric endolysin that targets the phytopathogen Pseudomonas syringae pv. actinidiae.\",\"authors\":\"Suzanne L Warring,Hazel M Sisson,George Randall,Dennis Grimon,Dorien Dams,Diana Gutiérrez,Matthias Fellner,Robert D Fagerlund,Yves Briers,Simon A Jackson,Peter C Fineran\",\"doi\":\"10.1016/j.jbc.2025.110224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global food shortages and rising antimicrobial resistance require alternatives to antibiotics and agrichemicals for the management of agricultural bacterial pathogens. The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of kiwifruit canker and is responsible for major agricultural losses. Bacteriophage enzymes present an emerging antimicrobial option. Endolysins possess the ability to cleave peptidoglycan and are effective antimicrobials against gram-positive bacteria. Delivery of endolysins to the peptidoglycan of gram-negatives is impeded by the additional outer membrane. To overcome this barrier, we used VersaTile molecular shuffling to produce Psa-targeting chimeric proteins which were tested for antimicrobial activity. These chimeras consist of endolysins linked by polypeptides to diverse phage proteins mined from Psa phage genomes. A preferential configuration for antibacterial activity was observed for enzymatic domains at the N-terminus and alternative phage proteins at the C-terminus. The lead variant possessed an N-terminal modular endolysin and a C-terminal lipase. Antibacterial activity was enhanced with the addition of the chemical permeabilizers citric acid or EDTA. Mutagenesis of the lipase active site eliminated exogenous antibacterial activity towards Psa. The endolysin-lipase chimera demonstrated specificity towards Psa, illustrating potential as a targeted biocontrol agent. Overall, we generated a chimeric endolysin with exogenous and specific activity towards Psa, the causative agent of kiwifruit canker.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"4 1\",\"pages\":\"110224\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110224\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110224","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineering an antimicrobial chimeric endolysin that targets the phytopathogen Pseudomonas syringae pv. actinidiae.
Global food shortages and rising antimicrobial resistance require alternatives to antibiotics and agrichemicals for the management of agricultural bacterial pathogens. The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of kiwifruit canker and is responsible for major agricultural losses. Bacteriophage enzymes present an emerging antimicrobial option. Endolysins possess the ability to cleave peptidoglycan and are effective antimicrobials against gram-positive bacteria. Delivery of endolysins to the peptidoglycan of gram-negatives is impeded by the additional outer membrane. To overcome this barrier, we used VersaTile molecular shuffling to produce Psa-targeting chimeric proteins which were tested for antimicrobial activity. These chimeras consist of endolysins linked by polypeptides to diverse phage proteins mined from Psa phage genomes. A preferential configuration for antibacterial activity was observed for enzymatic domains at the N-terminus and alternative phage proteins at the C-terminus. The lead variant possessed an N-terminal modular endolysin and a C-terminal lipase. Antibacterial activity was enhanced with the addition of the chemical permeabilizers citric acid or EDTA. Mutagenesis of the lipase active site eliminated exogenous antibacterial activity towards Psa. The endolysin-lipase chimera demonstrated specificity towards Psa, illustrating potential as a targeted biocontrol agent. Overall, we generated a chimeric endolysin with exogenous and specific activity towards Psa, the causative agent of kiwifruit canker.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.