{"title":"结构s层生物学的新时代-实验和硅里程碑。","authors":"Stephanie Grill-Walcher,Christina Schäffer","doi":"10.1016/j.jbc.2025.110205","DOIUrl":null,"url":null,"abstract":"Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"19 1","pages":"110205"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new age in structural S-layer biology - Experimental and in silico milestones.\",\"authors\":\"Stephanie Grill-Walcher,Christina Schäffer\",\"doi\":\"10.1016/j.jbc.2025.110205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"19 1\",\"pages\":\"110205\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110205\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A new age in structural S-layer biology - Experimental and in silico milestones.
Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.