基于风险价值的最优保险设计

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang
{"title":"基于风险价值的最优保险设计","authors":"Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang","doi":"10.1016/j.ejor.2025.04.038","DOIUrl":null,"url":null,"abstract":"This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk (<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi><mml:mi mathvariant=\"normal\">VaR</mml:mi></mml:mrow></mml:math>). Using the expected value premium principle, we first analyze a stop-loss indemnity and provide a closed-form expression for the deductible parameter. A necessary and sufficient condition for the existence of a positive and finite deductible is also established. We then generalize the stop-loss indemnity and show that, akin to the VaR model, a limited stop-loss indemnity remains optimal within the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi><mml:mi mathvariant=\"normal\">VaR</mml:mi></mml:mrow></mml:math> framework. Further, we examine the use of <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">VaR</mml:mi></mml:mrow></mml:math> as a premium principle and show that full or no insurance is optimal. We also identify that a limited loss indemnity is optimal when <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">VaR</mml:mi></mml:mrow></mml:math> is solely used to determine the risk-loading in the premium principle. Additionally, we investigate the impact of model uncertainty, particularly in scenarios where the loss distribution is unknown but lies within a specified uncertainty set. Our findings suggest that a limited stop-loss indemnity is optimal when the uncertainty set is defined using a likelihood ratio. Meanwhile, when only the first two moments of the loss distribution are available, we provide a closed-form expression for the optimal deductible in a stop-loss indemnity.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal insurance design with Lambda-Value-at-Risk\",\"authors\":\"Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang\",\"doi\":\"10.1016/j.ejor.2025.04.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk (<mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi><mml:mi mathvariant=\\\"normal\\\">VaR</mml:mi></mml:mrow></mml:math>). Using the expected value premium principle, we first analyze a stop-loss indemnity and provide a closed-form expression for the deductible parameter. A necessary and sufficient condition for the existence of a positive and finite deductible is also established. We then generalize the stop-loss indemnity and show that, akin to the VaR model, a limited stop-loss indemnity remains optimal within the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi><mml:mi mathvariant=\\\"normal\\\">VaR</mml:mi></mml:mrow></mml:math> framework. Further, we examine the use of <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">VaR</mml:mi></mml:mrow></mml:math> as a premium principle and show that full or no insurance is optimal. We also identify that a limited loss indemnity is optimal when <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\\\"normal\\\">Λ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">VaR</mml:mi></mml:mrow></mml:math> is solely used to determine the risk-loading in the premium principle. Additionally, we investigate the impact of model uncertainty, particularly in scenarios where the loss distribution is unknown but lies within a specified uncertainty set. Our findings suggest that a limited stop-loss indemnity is optimal when the uncertainty set is defined using a likelihood ratio. Meanwhile, when only the first two moments of the loss distribution are available, we provide a closed-form expression for the optimal deductible in a stop-loss indemnity.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.04.038\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.04.038","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了基于Lambda-Value-at-Risk (ΛVaR)的最优保险解决方案。利用期望值溢价原理,首先分析了一种止损赔偿,并给出了可抵扣参数的封闭表达式。建立了正有限可演绎项存在的充分必要条件。然后,我们推广了止损赔偿,并表明,类似于VaR模型,在ΛVaR框架内,有限的止损赔偿仍然是最优的。进一步,我们检验了Λ ' VaR作为保费原则的使用,并表明全额保险或不保险是最优的。我们还发现,当Λ ' VaR仅用于确定保费原则中的风险负荷时,有限损失赔偿是最优的。此外,我们还研究了模型不确定性的影响,特别是在损失分布未知但位于指定不确定性集中的情况下。我们的研究结果表明,当使用似然比定义不确定性集时,有限的止损赔偿是最优的。同时,当损失分布只有前两个矩可用时,我们给出了止损赔偿中最优免赔额的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal insurance design with Lambda-Value-at-Risk
This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk (ΛVaR). Using the expected value premium principle, we first analyze a stop-loss indemnity and provide a closed-form expression for the deductible parameter. A necessary and sufficient condition for the existence of a positive and finite deductible is also established. We then generalize the stop-loss indemnity and show that, akin to the VaR model, a limited stop-loss indemnity remains optimal within the ΛVaR framework. Further, we examine the use of ΛVaR as a premium principle and show that full or no insurance is optimal. We also identify that a limited loss indemnity is optimal when ΛVaR is solely used to determine the risk-loading in the premium principle. Additionally, we investigate the impact of model uncertainty, particularly in scenarios where the loss distribution is unknown but lies within a specified uncertainty set. Our findings suggest that a limited stop-loss indemnity is optimal when the uncertainty set is defined using a likelihood ratio. Meanwhile, when only the first two moments of the loss distribution are available, we provide a closed-form expression for the optimal deductible in a stop-loss indemnity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信