综合数据蒸馏使临床信息的大规模提取成为可能

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Elizabeth Geena Woo, Michael C. Burkhart, Emily Alsentzer, Brett K. Beaulieu-Jones
{"title":"综合数据蒸馏使临床信息的大规模提取成为可能","authors":"Elizabeth Geena Woo, Michael C. Burkhart, Emily Alsentzer, Brett K. Beaulieu-Jones","doi":"10.1038/s41746-025-01681-4","DOIUrl":null,"url":null,"abstract":"<p>Large-language models (LLMs) show promise for clinical note information extraction, but deployment challenges include high computational costs and privacy concerns. We used synthetic data distillation to fine-tune smaller, open-source LLMs to achieve performance comparable to larger models while enabling local hardware deployment or reduced cloud costs. Using Llama-3.1-70B-Instruct, we generated synthetic question-answer training pairs to fine-tune smaller Llama models. We evaluated performance across three tasks: synthetic clinical trial criteria, the i2b2 2018 Clinical Trial Eligibility Challenge, and apixaban trial criteria questions. The 8B-parameter model achieved high accuracy across all tasks and sometimes outperformed the 70B-Instruct teacher model. Fine-tuning with only the most challenging questions still improved performance, demonstrating the value of targeted training. Results from 3B- and 1B-parameter models showed a clear size-performance tradeoff. This work demonstrates synthetic data distillation’s potential for enabling scalable clinical information extraction.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"50 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic data distillation enables the extraction of clinical information at scale\",\"authors\":\"Elizabeth Geena Woo, Michael C. Burkhart, Emily Alsentzer, Brett K. Beaulieu-Jones\",\"doi\":\"10.1038/s41746-025-01681-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-language models (LLMs) show promise for clinical note information extraction, but deployment challenges include high computational costs and privacy concerns. We used synthetic data distillation to fine-tune smaller, open-source LLMs to achieve performance comparable to larger models while enabling local hardware deployment or reduced cloud costs. Using Llama-3.1-70B-Instruct, we generated synthetic question-answer training pairs to fine-tune smaller Llama models. We evaluated performance across three tasks: synthetic clinical trial criteria, the i2b2 2018 Clinical Trial Eligibility Challenge, and apixaban trial criteria questions. The 8B-parameter model achieved high accuracy across all tasks and sometimes outperformed the 70B-Instruct teacher model. Fine-tuning with only the most challenging questions still improved performance, demonstrating the value of targeted training. Results from 3B- and 1B-parameter models showed a clear size-performance tradeoff. This work demonstrates synthetic data distillation’s potential for enabling scalable clinical information extraction.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01681-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01681-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

大语言模型(llm)显示了临床笔记信息提取的前景,但部署挑战包括高计算成本和隐私问题。我们使用合成数据蒸馏来微调较小的开源llm,以实现与大型模型相当的性能,同时支持本地硬件部署或降低云成本。使用Llama-3.1- 70b - instruct,我们生成了合成的问答训练对,以微调较小的美洲驼模型。我们评估了三个任务的表现:合成临床试验标准、i2b2 2018临床试验资格挑战和阿哌沙班试验标准问题。8b参数模型在所有任务中都取得了很高的准确性,有时甚至优于70b - instruction教师模型。仅对最具挑战性的问题进行微调仍然可以提高成绩,这证明了有针对性培训的价值。3B和1b参数模型的结果显示了明显的大小-性能权衡。这项工作证明了合成数据蒸馏在实现可扩展的临床信息提取方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthetic data distillation enables the extraction of clinical information at scale

Synthetic data distillation enables the extraction of clinical information at scale

Large-language models (LLMs) show promise for clinical note information extraction, but deployment challenges include high computational costs and privacy concerns. We used synthetic data distillation to fine-tune smaller, open-source LLMs to achieve performance comparable to larger models while enabling local hardware deployment or reduced cloud costs. Using Llama-3.1-70B-Instruct, we generated synthetic question-answer training pairs to fine-tune smaller Llama models. We evaluated performance across three tasks: synthetic clinical trial criteria, the i2b2 2018 Clinical Trial Eligibility Challenge, and apixaban trial criteria questions. The 8B-parameter model achieved high accuracy across all tasks and sometimes outperformed the 70B-Instruct teacher model. Fine-tuning with only the most challenging questions still improved performance, demonstrating the value of targeted training. Results from 3B- and 1B-parameter models showed a clear size-performance tradeoff. This work demonstrates synthetic data distillation’s potential for enabling scalable clinical information extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信