NOTCH2破坏滑膜成纤维细胞的特性和骨骺软骨细胞的炎症反应。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ernesto Canalis,Rosa Guzzo,Lauren Schilling,Emily Denker
{"title":"NOTCH2破坏滑膜成纤维细胞的特性和骨骺软骨细胞的炎症反应。","authors":"Ernesto Canalis,Rosa Guzzo,Lauren Schilling,Emily Denker","doi":"10.1016/j.jbc.2025.110206","DOIUrl":null,"url":null,"abstract":"Notch signaling plays a fundamental role in the inflammatory response and has been linked to the pathogenesis of osteoarthritis in murine models of the disease and in humans. To address how Notch signaling modifies transcriptomes and cell populations, we examined the effects of NOTCH2 in chondrocytes from mice harboring a NOTCH2 gain-of-function mutation (Notch2tm1.1Ecan) and a conditional NOTCH2 gain-of-function model expressing the NOTCH2 intracellular domain (NICD2) from the Rosa26 locus (R26-NICD2 mice). Bulk RNA-Sequencing (RNA-Seq) of primary epiphyseal cells from both gain-of-function models established increased expression of pathways associated with the phagosome, genes linked to osteoclast activity in rheumatoid arthritis signaling and pulmonary fibrosis signaling. Expression of genes linked to collagen degradation was enhanced in Notch2tm1.1Ecan cells, while genes related to osteoarthritis pathways were increased in NICD2-expressing cells. Single cell (sc)RNA-Seq of cultured Notch2tm1.1Ecan cells revealed clusters of cells related to limb mesenchyme, chondrogenic cells and fibroblasts including articular synovial fibroblasts. Pseudotime trajectory revealed close associations among clusters in control cultures, but the cluster of articular/synovial fibroblasts was disrupted in cells from Notch2tm1.1Ecan mice. ScRNA-Seq showed similarities in the cluster distributions and pseudotime trajectories of NICD2-expressing and control cells, except for altered progression in a cluster of NICD2-expressing cells. In conclusion, NOTCH2 enhances the activity of pathways associated with inflammation in epiphyseal chondrocytes and disrupts the transcriptome profile of articular/synovial fibroblasts.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"105 1","pages":"110206"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOTCH2 disrupts the synovial fibroblast identity and the inflammatory response of epiphyseal chondrocytes.\",\"authors\":\"Ernesto Canalis,Rosa Guzzo,Lauren Schilling,Emily Denker\",\"doi\":\"10.1016/j.jbc.2025.110206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notch signaling plays a fundamental role in the inflammatory response and has been linked to the pathogenesis of osteoarthritis in murine models of the disease and in humans. To address how Notch signaling modifies transcriptomes and cell populations, we examined the effects of NOTCH2 in chondrocytes from mice harboring a NOTCH2 gain-of-function mutation (Notch2tm1.1Ecan) and a conditional NOTCH2 gain-of-function model expressing the NOTCH2 intracellular domain (NICD2) from the Rosa26 locus (R26-NICD2 mice). Bulk RNA-Sequencing (RNA-Seq) of primary epiphyseal cells from both gain-of-function models established increased expression of pathways associated with the phagosome, genes linked to osteoclast activity in rheumatoid arthritis signaling and pulmonary fibrosis signaling. Expression of genes linked to collagen degradation was enhanced in Notch2tm1.1Ecan cells, while genes related to osteoarthritis pathways were increased in NICD2-expressing cells. Single cell (sc)RNA-Seq of cultured Notch2tm1.1Ecan cells revealed clusters of cells related to limb mesenchyme, chondrogenic cells and fibroblasts including articular synovial fibroblasts. Pseudotime trajectory revealed close associations among clusters in control cultures, but the cluster of articular/synovial fibroblasts was disrupted in cells from Notch2tm1.1Ecan mice. ScRNA-Seq showed similarities in the cluster distributions and pseudotime trajectories of NICD2-expressing and control cells, except for altered progression in a cluster of NICD2-expressing cells. In conclusion, NOTCH2 enhances the activity of pathways associated with inflammation in epiphyseal chondrocytes and disrupts the transcriptome profile of articular/synovial fibroblasts.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"105 1\",\"pages\":\"110206\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110206\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110206","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Notch信号在炎症反应中起着重要作用,并与小鼠骨关节炎模型和人类骨关节炎的发病机制有关。为了研究Notch信号如何改变转录组和细胞群,我们研究了NOTCH2在携带NOTCH2功能获得突变(Notch2tm1.1Ecan)的小鼠软骨细胞中的作用,以及表达来自Rosa26位点的NOTCH2胞内结构域(NICD2)的条件NOTCH2功能获得模型(R26-NICD2小鼠)。来自两种功能获得模型的原代骺细胞的大量rna测序(RNA-Seq)发现,在类风湿关节炎信号传导和肺纤维化信号传导中,与吞噬体相关的途径、与破骨细胞活性相关的基因表达增加。在Notch2tm1.1Ecan细胞中,与胶原降解相关的基因表达增强,而在nicd2表达细胞中,与骨关节炎途径相关的基因表达增加。培养的Notch2tm1.1Ecan细胞的单细胞RNA-Seq显示了与肢体间充质、软骨细胞和成纤维细胞(包括关节滑膜成纤维细胞)相关的细胞簇。假时间轨迹显示,在对照培养中,簇之间存在密切关联,但在Notch2tm1.1Ecan小鼠细胞中,关节/滑膜成纤维细胞簇被破坏。ScRNA-Seq显示nicd2表达细胞和对照细胞的簇分布和伪时间轨迹相似,除了nicd2表达细胞簇的进展改变。总之,NOTCH2增强了骨骺软骨细胞炎症相关通路的活性,并破坏了关节/滑膜成纤维细胞的转录组谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOTCH2 disrupts the synovial fibroblast identity and the inflammatory response of epiphyseal chondrocytes.
Notch signaling plays a fundamental role in the inflammatory response and has been linked to the pathogenesis of osteoarthritis in murine models of the disease and in humans. To address how Notch signaling modifies transcriptomes and cell populations, we examined the effects of NOTCH2 in chondrocytes from mice harboring a NOTCH2 gain-of-function mutation (Notch2tm1.1Ecan) and a conditional NOTCH2 gain-of-function model expressing the NOTCH2 intracellular domain (NICD2) from the Rosa26 locus (R26-NICD2 mice). Bulk RNA-Sequencing (RNA-Seq) of primary epiphyseal cells from both gain-of-function models established increased expression of pathways associated with the phagosome, genes linked to osteoclast activity in rheumatoid arthritis signaling and pulmonary fibrosis signaling. Expression of genes linked to collagen degradation was enhanced in Notch2tm1.1Ecan cells, while genes related to osteoarthritis pathways were increased in NICD2-expressing cells. Single cell (sc)RNA-Seq of cultured Notch2tm1.1Ecan cells revealed clusters of cells related to limb mesenchyme, chondrogenic cells and fibroblasts including articular synovial fibroblasts. Pseudotime trajectory revealed close associations among clusters in control cultures, but the cluster of articular/synovial fibroblasts was disrupted in cells from Notch2tm1.1Ecan mice. ScRNA-Seq showed similarities in the cluster distributions and pseudotime trajectories of NICD2-expressing and control cells, except for altered progression in a cluster of NICD2-expressing cells. In conclusion, NOTCH2 enhances the activity of pathways associated with inflammation in epiphyseal chondrocytes and disrupts the transcriptome profile of articular/synovial fibroblasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信