二次正则化线性规划的定量收敛性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Alberto González-Sanz, Marcel Nutz
{"title":"二次正则化线性规划的定量收敛性","authors":"Alberto González-Sanz,&nbsp;Marcel Nutz","doi":"10.1007/s00245-025-10267-1","DOIUrl":null,"url":null,"abstract":"<div><p>Linear programs with quadratic (“ridge”) regularization are of recent interest in optimal transport: unlike entropic regularization, the squared-norm penalty gives rise to sparse approximations of optimal transport couplings. More broadly, quadratic regularization is used in overparametrized learning problems to single out a particular solution. It is well known that the solution of a quadratically regularized linear program over any polytope converges stationarily to the minimal-norm solution of the linear program when the regularization parameter tends to zero. However, that result is merely qualitative. Our main result quantifies the convergence by specifying the exact threshold for the regularization parameter, after which the regularized solution also solves the linear program. Moreover, we bound the suboptimality of the regularized solution before the threshold. These results are complemented by a convergence rate for the regime of large regularization. We apply our general results to the setting of optimal transport, where we shed light on how the threshold and suboptimality depend on the number of data points.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Convergence of Quadratically Regularized Linear Programs\",\"authors\":\"Alberto González-Sanz,&nbsp;Marcel Nutz\",\"doi\":\"10.1007/s00245-025-10267-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear programs with quadratic (“ridge”) regularization are of recent interest in optimal transport: unlike entropic regularization, the squared-norm penalty gives rise to sparse approximations of optimal transport couplings. More broadly, quadratic regularization is used in overparametrized learning problems to single out a particular solution. It is well known that the solution of a quadratically regularized linear program over any polytope converges stationarily to the minimal-norm solution of the linear program when the regularization parameter tends to zero. However, that result is merely qualitative. Our main result quantifies the convergence by specifying the exact threshold for the regularization parameter, after which the regularized solution also solves the linear program. Moreover, we bound the suboptimality of the regularized solution before the threshold. These results are complemented by a convergence rate for the regime of large regularization. We apply our general results to the setting of optimal transport, where we shed light on how the threshold and suboptimality depend on the number of data points.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10267-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10267-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有二次正则化(“脊”)的线性规划最近在最优传输中引起了人们的兴趣:与熵正则化不同,平方范数惩罚产生了最优传输耦合的稀疏近似。更广泛地说,二次正则化被用于过度参数化的学习问题,以挑选出一个特殊的解决方案。众所周知,当正则化参数趋于零时,任何多边形上的二次正则化线性规划的解都平稳地收敛于线性规划的最小范数解。然而,这个结果仅仅是定性的。我们的主要结果通过指定正则化参数的精确阈值来量化收敛性,之后的正则化解也求解线性规划。此外,我们在阈值前对正则解的次优性进行了定界。这些结果得到了大正则化制度的收敛率的补充。我们将我们的一般结果应用于最优传输的设置,其中我们阐明了阈值和次优性如何依赖于数据点的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Convergence of Quadratically Regularized Linear Programs

Linear programs with quadratic (“ridge”) regularization are of recent interest in optimal transport: unlike entropic regularization, the squared-norm penalty gives rise to sparse approximations of optimal transport couplings. More broadly, quadratic regularization is used in overparametrized learning problems to single out a particular solution. It is well known that the solution of a quadratically regularized linear program over any polytope converges stationarily to the minimal-norm solution of the linear program when the regularization parameter tends to zero. However, that result is merely qualitative. Our main result quantifies the convergence by specifying the exact threshold for the regularization parameter, after which the regularized solution also solves the linear program. Moreover, we bound the suboptimality of the regularized solution before the threshold. These results are complemented by a convergence rate for the regime of large regularization. We apply our general results to the setting of optimal transport, where we shed light on how the threshold and suboptimality depend on the number of data points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信