完全Kähler流形上的代数退化定理

IF 1.4 3区 数学 Q1 MATHEMATICS
Mengyue Liu, Xianjing Dong
{"title":"完全Kähler流形上的代数退化定理","authors":"Mengyue Liu,&nbsp;Xianjing Dong","doi":"10.1007/s13324-025-01066-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop an algebraic degeneracy theorem for meromorphic mappings from Kähler manifolds into complex projective manifolds provided that the dimension of target manifolds is not greater than that of source manifolds. With some curvature or growth conditions imposed, we show that any meromorphic mapping must be algebraically degenerate if it satisfies a defect relation.\n</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic degeneracy theorem on complete Kähler manifolds\",\"authors\":\"Mengyue Liu,&nbsp;Xianjing Dong\",\"doi\":\"10.1007/s13324-025-01066-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop an algebraic degeneracy theorem for meromorphic mappings from Kähler manifolds into complex projective manifolds provided that the dimension of target manifolds is not greater than that of source manifolds. With some curvature or growth conditions imposed, we show that any meromorphic mapping must be algebraically degenerate if it satisfies a defect relation.\\n</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01066-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01066-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在目标流形维数不大于源流形维数的条件下,给出了从Kähler流形到复射影流形的亚纯映射的代数退化定理。在一定的曲率或生长条件下,我们证明了任何亚纯映射如果满足缺陷关系就必须是代数简并的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic degeneracy theorem on complete Kähler manifolds

In this paper, we develop an algebraic degeneracy theorem for meromorphic mappings from Kähler manifolds into complex projective manifolds provided that the dimension of target manifolds is not greater than that of source manifolds. With some curvature or growth conditions imposed, we show that any meromorphic mapping must be algebraically degenerate if it satisfies a defect relation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信