基于双通道关注改进FCN的景观建筑设计分类

Zhongyu Zhou
{"title":"基于双通道关注改进FCN的景观建筑设计分类","authors":"Zhongyu Zhou","doi":"10.1016/j.sasc.2025.200280","DOIUrl":null,"url":null,"abstract":"<div><div>Landscape architecture design integrates natural and artificial landscapes, and needs to accurately categorize diverse landscape elements. To solve the problems of low efficiency and high subjectivity of traditional design, the study proposes an improved fully convolutional network model that combines the U-Net structure, multi-scale hopping connection network, and dual-channel attention mechanism to enhance the ability of detail capture and feature fusion. The experimental results show that the model achieves the highest classification recall of 0.92, the shortest inference time of 0.17 s, the precision of 92.96 %, 93.97 % and 92.94 % on vegetation, sky and building categories, respectively, and the feature extraction is stable with good robustness in pixel value interval. The results validate the efficiency and adaptability of the model in complex landscape scenes and provide effective support for landscape design intelligence.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200280"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of landscape architecture design based on dual-channel attention improved FCN\",\"authors\":\"Zhongyu Zhou\",\"doi\":\"10.1016/j.sasc.2025.200280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Landscape architecture design integrates natural and artificial landscapes, and needs to accurately categorize diverse landscape elements. To solve the problems of low efficiency and high subjectivity of traditional design, the study proposes an improved fully convolutional network model that combines the U-Net structure, multi-scale hopping connection network, and dual-channel attention mechanism to enhance the ability of detail capture and feature fusion. The experimental results show that the model achieves the highest classification recall of 0.92, the shortest inference time of 0.17 s, the precision of 92.96 %, 93.97 % and 92.94 % on vegetation, sky and building categories, respectively, and the feature extraction is stable with good robustness in pixel value interval. The results validate the efficiency and adaptability of the model in complex landscape scenes and provide effective support for landscape design intelligence.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"7 \",\"pages\":\"Article 200280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941925000985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

景观建筑设计整合了自然景观和人工景观,需要对不同的景观元素进行准确的分类。针对传统设计效率低、主观性高的问题,提出了一种改进的全卷积网络模型,该模型结合U-Net结构、多尺度跳变连接网络和双通道注意机制,增强了细节捕获和特征融合能力。实验结果表明,该模型在植被、天空和建筑类别上的分类召回率最高为0.92,推理时间最短为0.17 s,准确率分别为92.96%、93.97%和92.94%,特征提取在像素值区间内具有较好的鲁棒性和稳定性。结果验证了该模型在复杂景观场景中的有效性和适应性,为景观设计智能化提供了有效支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of landscape architecture design based on dual-channel attention improved FCN
Landscape architecture design integrates natural and artificial landscapes, and needs to accurately categorize diverse landscape elements. To solve the problems of low efficiency and high subjectivity of traditional design, the study proposes an improved fully convolutional network model that combines the U-Net structure, multi-scale hopping connection network, and dual-channel attention mechanism to enhance the ability of detail capture and feature fusion. The experimental results show that the model achieves the highest classification recall of 0.92, the shortest inference time of 0.17 s, the precision of 92.96 %, 93.97 % and 92.94 % on vegetation, sky and building categories, respectively, and the feature extraction is stable with good robustness in pixel value interval. The results validate the efficiency and adaptability of the model in complex landscape scenes and provide effective support for landscape design intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信