Jialu Bai , Ruiling Xiao , Decheng Jiang , Xiyuan Luo , Yuemeng Tang , Ming Cui , Lei You , Yupei Zhao
{"title":"唾液酸:促进癌细胞和肿瘤微环境驯化的甜调节剂","authors":"Jialu Bai , Ruiling Xiao , Decheng Jiang , Xiyuan Luo , Yuemeng Tang , Ming Cui , Lei You , Yupei Zhao","doi":"10.1016/j.canlet.2025.217773","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor microenvironment (TME) can shift towards either immune activation or immunosuppression, influenced by various factors. Recent studies have underscored the pivotal role of sialic acids, a group of monosaccharides with a 9-carbon backbone, in modulating the TME. Aberrant expression or abnormal addition of sialic acids to the surface of cancer cells and within the tumor stroma has been identified as a key contributor to tumor progression. Abnormal sialylation on cancer cell surfaces can inhibit apoptosis, enhance cell proliferation, and facilitate metastasis. Notably, recent findings suggest that dysregulated sialic acid expression in the TME actively contributes to shaping an immunosuppressive niche by reducing the population of anti-tumor immune cells and impairing immune cell function. The mechanisms by which sialic acids foster immune escape and shape the immunosuppressive TME have been partially unraveled, particularly through interactions with sialic acid receptors on immune cells. Importantly, several sialic acid-targeted therapies are currently advancing into clinical trials, offering promising prospects for clinical translation. This dysregulated sialylation represents a significant opportunity for molecular diagnostics and therapeutic interventions in oncology. Targeting aberrant sialylation or disrupting the interaction between sialic acids and their receptors offers potential strategies to reprogram the TME towards an anti-tumor phenotype, thereby facilitating the advancement of innovative cancer therapies.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"626 ","pages":"Article 217773"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sialic Acids: Sweet modulators fueling cancer cells and domesticating the tumor microenvironment\",\"authors\":\"Jialu Bai , Ruiling Xiao , Decheng Jiang , Xiyuan Luo , Yuemeng Tang , Ming Cui , Lei You , Yupei Zhao\",\"doi\":\"10.1016/j.canlet.2025.217773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tumor microenvironment (TME) can shift towards either immune activation or immunosuppression, influenced by various factors. Recent studies have underscored the pivotal role of sialic acids, a group of monosaccharides with a 9-carbon backbone, in modulating the TME. Aberrant expression or abnormal addition of sialic acids to the surface of cancer cells and within the tumor stroma has been identified as a key contributor to tumor progression. Abnormal sialylation on cancer cell surfaces can inhibit apoptosis, enhance cell proliferation, and facilitate metastasis. Notably, recent findings suggest that dysregulated sialic acid expression in the TME actively contributes to shaping an immunosuppressive niche by reducing the population of anti-tumor immune cells and impairing immune cell function. The mechanisms by which sialic acids foster immune escape and shape the immunosuppressive TME have been partially unraveled, particularly through interactions with sialic acid receptors on immune cells. Importantly, several sialic acid-targeted therapies are currently advancing into clinical trials, offering promising prospects for clinical translation. This dysregulated sialylation represents a significant opportunity for molecular diagnostics and therapeutic interventions in oncology. Targeting aberrant sialylation or disrupting the interaction between sialic acids and their receptors offers potential strategies to reprogram the TME towards an anti-tumor phenotype, thereby facilitating the advancement of innovative cancer therapies.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"626 \",\"pages\":\"Article 217773\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525003398\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003398","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Sialic Acids: Sweet modulators fueling cancer cells and domesticating the tumor microenvironment
Tumor microenvironment (TME) can shift towards either immune activation or immunosuppression, influenced by various factors. Recent studies have underscored the pivotal role of sialic acids, a group of monosaccharides with a 9-carbon backbone, in modulating the TME. Aberrant expression or abnormal addition of sialic acids to the surface of cancer cells and within the tumor stroma has been identified as a key contributor to tumor progression. Abnormal sialylation on cancer cell surfaces can inhibit apoptosis, enhance cell proliferation, and facilitate metastasis. Notably, recent findings suggest that dysregulated sialic acid expression in the TME actively contributes to shaping an immunosuppressive niche by reducing the population of anti-tumor immune cells and impairing immune cell function. The mechanisms by which sialic acids foster immune escape and shape the immunosuppressive TME have been partially unraveled, particularly through interactions with sialic acid receptors on immune cells. Importantly, several sialic acid-targeted therapies are currently advancing into clinical trials, offering promising prospects for clinical translation. This dysregulated sialylation represents a significant opportunity for molecular diagnostics and therapeutic interventions in oncology. Targeting aberrant sialylation or disrupting the interaction between sialic acids and their receptors offers potential strategies to reprogram the TME towards an anti-tumor phenotype, thereby facilitating the advancement of innovative cancer therapies.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.