Sina Safari , Diogo Montalvão , Pedro R. da Costa , Luís Reis , Manuel Freitas
{"title":"超声疲劳试验机的统计校正与概率疲劳寿命估计","authors":"Sina Safari , Diogo Montalvão , Pedro R. da Costa , Luís Reis , Manuel Freitas","doi":"10.1016/j.ijfatigue.2025.109028","DOIUrl":null,"url":null,"abstract":"<div><div>A new statistical technique is proposed to quantify the experimental uncertainty observed during ultrasonic fatigue testing of metals and its propagation into the stress-lifetime predictive curve. Hierarchical Bayesian method is employed during the calibration and operation steps of ultrasonic fatigue testing for the first time in this paper. This is particularly important due to the significant dispersion observed in stress-life data within the high and very high cycle fatigue regimes. First, the measurement systems, including displacement laser readings and high-speed camera system outputs, are cross-calibrated. Second, a statistical learning approach is applied to establish the stress-deformation relationship, leveraging Digital Image Correlation (DIC) measurements of strain and laser displacement measurements at the ultrasonic machine specimen’s tip. Third, an additional hierarchical layer is introduced to infer the uncertainty in stress-life curves by incorporating learned stress distributions and the distribution of fatigue failure cycles. The results identify key sources of uncertainty in UFT and demonstrate that a hierarchical Bayesian approach provides a systematic framework for quantifying these uncertainties.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"199 ","pages":"Article 109028"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical calibration of ultrasonic fatigue testing machine and probabilistic fatigue life estimation\",\"authors\":\"Sina Safari , Diogo Montalvão , Pedro R. da Costa , Luís Reis , Manuel Freitas\",\"doi\":\"10.1016/j.ijfatigue.2025.109028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new statistical technique is proposed to quantify the experimental uncertainty observed during ultrasonic fatigue testing of metals and its propagation into the stress-lifetime predictive curve. Hierarchical Bayesian method is employed during the calibration and operation steps of ultrasonic fatigue testing for the first time in this paper. This is particularly important due to the significant dispersion observed in stress-life data within the high and very high cycle fatigue regimes. First, the measurement systems, including displacement laser readings and high-speed camera system outputs, are cross-calibrated. Second, a statistical learning approach is applied to establish the stress-deformation relationship, leveraging Digital Image Correlation (DIC) measurements of strain and laser displacement measurements at the ultrasonic machine specimen’s tip. Third, an additional hierarchical layer is introduced to infer the uncertainty in stress-life curves by incorporating learned stress distributions and the distribution of fatigue failure cycles. The results identify key sources of uncertainty in UFT and demonstrate that a hierarchical Bayesian approach provides a systematic framework for quantifying these uncertainties.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"199 \",\"pages\":\"Article 109028\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112325002257\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325002257","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Statistical calibration of ultrasonic fatigue testing machine and probabilistic fatigue life estimation
A new statistical technique is proposed to quantify the experimental uncertainty observed during ultrasonic fatigue testing of metals and its propagation into the stress-lifetime predictive curve. Hierarchical Bayesian method is employed during the calibration and operation steps of ultrasonic fatigue testing for the first time in this paper. This is particularly important due to the significant dispersion observed in stress-life data within the high and very high cycle fatigue regimes. First, the measurement systems, including displacement laser readings and high-speed camera system outputs, are cross-calibrated. Second, a statistical learning approach is applied to establish the stress-deformation relationship, leveraging Digital Image Correlation (DIC) measurements of strain and laser displacement measurements at the ultrasonic machine specimen’s tip. Third, an additional hierarchical layer is introduced to infer the uncertainty in stress-life curves by incorporating learned stress distributions and the distribution of fatigue failure cycles. The results identify key sources of uncertainty in UFT and demonstrate that a hierarchical Bayesian approach provides a systematic framework for quantifying these uncertainties.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.