Jiahui Li , Yinping Guo , Wenjie Zhang , Min Xia , Gaohua Liu , Yan Sun , Chang Liu , Jing Zhong
{"title":"胆固醇代谢:克服肿瘤耐药的策略","authors":"Jiahui Li , Yinping Guo , Wenjie Zhang , Min Xia , Gaohua Liu , Yan Sun , Chang Liu , Jing Zhong","doi":"10.1016/j.bcp.2025.116974","DOIUrl":null,"url":null,"abstract":"<div><div>Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"238 ","pages":"Article 116974"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cholesterol metabolism: A strategy for overcoming drug resistance in tumors\",\"authors\":\"Jiahui Li , Yinping Guo , Wenjie Zhang , Min Xia , Gaohua Liu , Yan Sun , Chang Liu , Jing Zhong\",\"doi\":\"10.1016/j.bcp.2025.116974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"238 \",\"pages\":\"Article 116974\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295225002369\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225002369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Cholesterol metabolism: A strategy for overcoming drug resistance in tumors
Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.