Laetitia Perronne , Marie Binvignat , Nathan Foulquier , Alain Saraux , Jean Denis Laredo , Constance de Margerie-Mellon , Laure Fournier , Jérémie Sellam
{"title":"风湿性肌肉骨骼疾病手部成像的算法方法:系统文献综述","authors":"Laetitia Perronne , Marie Binvignat , Nathan Foulquier , Alain Saraux , Jean Denis Laredo , Constance de Margerie-Mellon , Laure Fournier , Jérémie Sellam","doi":"10.1016/j.semarthrit.2025.152750","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This systematic literature review provides a comprehensive overview of the use of machine learning (ML) in hand imaging of rheumatic musculoskeletal diseases (RMDs). The review evaluates ML algorithms, imaging modalities, patient populations, validation methods, and areas for improvement.</div></div><div><h3>Methods</h3><div>The review was conducted following PRISMA guidelines and registered with PROSPERO. Articles were retrieved from PubMed, EMBASE, and Scopus using relevant MeSH terms and keywords. The search, executed in October 2024, was conducted manually and with BiBot, an AI-based tool for literature reviews. Studies focusing on ML applications in osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PsA) were included.</div></div><div><h3>Results</h3><div>From 400 initially identified studies, 32 met the inclusion criteria. RA was the most studied disease (88 %), followed by OA (22 %) and PsA (9 %). Convolutional neural networks (CNNs) were the most frequently used algorithms (50 %). Standard radiographs (59 %) were the predominant imaging modality, followed by MRI (16 %). Despite recommendations for ML studies, external validation was conducted in only 15 % of studies, and just 6 % of datasets were publicly available. Interpretability tools were employed in 28 % of studies to enhance clinical relevance.</div></div><div><h3>Conclusion</h3><div>ML has significant potential to improve diagnostics and disease management in hand imaging of RMDs. However, key challenges remain, including the need for increased external validation, broader disease coverage (OA and PsA), and improved data-sharing practices to enhance reproducibility and clinical adoption.</div></div>","PeriodicalId":21715,"journal":{"name":"Seminars in arthritis and rheumatism","volume":"73 ","pages":"Article 152750"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic approaches in hand imaging for rheumatic musculoskeletal diseases: A systematic literature review\",\"authors\":\"Laetitia Perronne , Marie Binvignat , Nathan Foulquier , Alain Saraux , Jean Denis Laredo , Constance de Margerie-Mellon , Laure Fournier , Jérémie Sellam\",\"doi\":\"10.1016/j.semarthrit.2025.152750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>This systematic literature review provides a comprehensive overview of the use of machine learning (ML) in hand imaging of rheumatic musculoskeletal diseases (RMDs). The review evaluates ML algorithms, imaging modalities, patient populations, validation methods, and areas for improvement.</div></div><div><h3>Methods</h3><div>The review was conducted following PRISMA guidelines and registered with PROSPERO. Articles were retrieved from PubMed, EMBASE, and Scopus using relevant MeSH terms and keywords. The search, executed in October 2024, was conducted manually and with BiBot, an AI-based tool for literature reviews. Studies focusing on ML applications in osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PsA) were included.</div></div><div><h3>Results</h3><div>From 400 initially identified studies, 32 met the inclusion criteria. RA was the most studied disease (88 %), followed by OA (22 %) and PsA (9 %). Convolutional neural networks (CNNs) were the most frequently used algorithms (50 %). Standard radiographs (59 %) were the predominant imaging modality, followed by MRI (16 %). Despite recommendations for ML studies, external validation was conducted in only 15 % of studies, and just 6 % of datasets were publicly available. Interpretability tools were employed in 28 % of studies to enhance clinical relevance.</div></div><div><h3>Conclusion</h3><div>ML has significant potential to improve diagnostics and disease management in hand imaging of RMDs. However, key challenges remain, including the need for increased external validation, broader disease coverage (OA and PsA), and improved data-sharing practices to enhance reproducibility and clinical adoption.</div></div>\",\"PeriodicalId\":21715,\"journal\":{\"name\":\"Seminars in arthritis and rheumatism\",\"volume\":\"73 \",\"pages\":\"Article 152750\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in arthritis and rheumatism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0049017225001210\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in arthritis and rheumatism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0049017225001210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Algorithmic approaches in hand imaging for rheumatic musculoskeletal diseases: A systematic literature review
Objective
This systematic literature review provides a comprehensive overview of the use of machine learning (ML) in hand imaging of rheumatic musculoskeletal diseases (RMDs). The review evaluates ML algorithms, imaging modalities, patient populations, validation methods, and areas for improvement.
Methods
The review was conducted following PRISMA guidelines and registered with PROSPERO. Articles were retrieved from PubMed, EMBASE, and Scopus using relevant MeSH terms and keywords. The search, executed in October 2024, was conducted manually and with BiBot, an AI-based tool for literature reviews. Studies focusing on ML applications in osteoarthritis (OA), rheumatoid arthritis (RA), and psoriatic arthritis (PsA) were included.
Results
From 400 initially identified studies, 32 met the inclusion criteria. RA was the most studied disease (88 %), followed by OA (22 %) and PsA (9 %). Convolutional neural networks (CNNs) were the most frequently used algorithms (50 %). Standard radiographs (59 %) were the predominant imaging modality, followed by MRI (16 %). Despite recommendations for ML studies, external validation was conducted in only 15 % of studies, and just 6 % of datasets were publicly available. Interpretability tools were employed in 28 % of studies to enhance clinical relevance.
Conclusion
ML has significant potential to improve diagnostics and disease management in hand imaging of RMDs. However, key challenges remain, including the need for increased external validation, broader disease coverage (OA and PsA), and improved data-sharing practices to enhance reproducibility and clinical adoption.
期刊介绍:
Seminars in Arthritis and Rheumatism provides access to the highest-quality clinical, therapeutic and translational research about arthritis, rheumatology and musculoskeletal disorders that affect the joints and connective tissue. Each bimonthly issue includes articles giving you the latest diagnostic criteria, consensus statements, systematic reviews and meta-analyses as well as clinical and translational research studies. Read this journal for the latest groundbreaking research and to gain insights from scientists and clinicians on the management and treatment of musculoskeletal and autoimmune rheumatologic diseases. The journal is of interest to rheumatologists, orthopedic surgeons, internal medicine physicians, immunologists and specialists in bone and mineral metabolism.