Maura Lynch-Miller , Sandra Lockow , Katrin Dümmer , Timo Henneck , Ruth Olmer , Mark-Christian Jaboreck , AhmedElmontaser O. Mergani , Madita Wandrey , Katja Branitzki-Heinemann , Graham Brogden , Hassan Y. Naim , Ulrich Martin , Claudia Schulz , Steven R. Talbot , Marita Meurer , Wolfgang Baumgärtner , Maren von Köckritz-Blickwede
{"title":"常氧和缺氧条件下三维人肺上皮模型形态学和氧状态的表征","authors":"Maura Lynch-Miller , Sandra Lockow , Katrin Dümmer , Timo Henneck , Ruth Olmer , Mark-Christian Jaboreck , AhmedElmontaser O. Mergani , Madita Wandrey , Katja Branitzki-Heinemann , Graham Brogden , Hassan Y. Naim , Ulrich Martin , Claudia Schulz , Steven R. Talbot , Marita Meurer , Wolfgang Baumgärtner , Maren von Köckritz-Blickwede","doi":"10.1016/j.bbamcr.2025.119980","DOIUrl":null,"url":null,"abstract":"<div><div>Infection generates localized hypoxia in affected tissue, inducing cellular survival responses and modulating inflammatory processes. Consideration of oxygen status as a parameter in <em>in vitro</em> infection research is therefore vital to the generation of physiologically relevant data within the 3R context. In this study, we characterize the culture morphology and oxygenation of liquid-liquid interface (LLI) permanent bronchial epithelial (Calu-3), classical air-liquid interface (cALI) Calu-3, and cALI human primary bronchial epithelial cell (hBEC) models under the normoxic conditions within standard incubators, commonly employed in <em>in vitro</em> work. We compare the normoxic state of these models to their hypoxic state to assess changes in the airway epithelial environment in response to oxygen deprivation, and the extent to which select hypoxia responses can be observed at the molecular level. Additional juxtapositions are drawn between Calu-3 LLI and cALI models and Calu-3 conventional monolayer (CM) and inverted air-liquid interface (iALI) models, due to their relevance for basic and specialized research, respectively. Epithelial complexity was observed to vary amongst the filter-based models, and all models were found to exhibit characteristic extracellular oxygen depletion patterns under normoxia. Importantly, the extracellular oxygen contents of Calu-3 LLI, cALI, and CM models significantly decreased during normoxic incubation. Specific hypoxia responses through stabilization of HIF-1α, HIF-2α, and/or HIF-3α and alteration of ACE2 protein levels differed in response to both culture format and cell type. Therefore, while all models examined provide valuable opportunities for <em>in vitro</em> exploration, variation in their morphological, physiological, and molecular characteristics necessitates careful consideration during experimental design.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 6","pages":"Article 119980"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of 3D human pulmonary epithelial model morphology and oxygen status under normoxia and hypoxia\",\"authors\":\"Maura Lynch-Miller , Sandra Lockow , Katrin Dümmer , Timo Henneck , Ruth Olmer , Mark-Christian Jaboreck , AhmedElmontaser O. Mergani , Madita Wandrey , Katja Branitzki-Heinemann , Graham Brogden , Hassan Y. Naim , Ulrich Martin , Claudia Schulz , Steven R. Talbot , Marita Meurer , Wolfgang Baumgärtner , Maren von Köckritz-Blickwede\",\"doi\":\"10.1016/j.bbamcr.2025.119980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infection generates localized hypoxia in affected tissue, inducing cellular survival responses and modulating inflammatory processes. Consideration of oxygen status as a parameter in <em>in vitro</em> infection research is therefore vital to the generation of physiologically relevant data within the 3R context. In this study, we characterize the culture morphology and oxygenation of liquid-liquid interface (LLI) permanent bronchial epithelial (Calu-3), classical air-liquid interface (cALI) Calu-3, and cALI human primary bronchial epithelial cell (hBEC) models under the normoxic conditions within standard incubators, commonly employed in <em>in vitro</em> work. We compare the normoxic state of these models to their hypoxic state to assess changes in the airway epithelial environment in response to oxygen deprivation, and the extent to which select hypoxia responses can be observed at the molecular level. Additional juxtapositions are drawn between Calu-3 LLI and cALI models and Calu-3 conventional monolayer (CM) and inverted air-liquid interface (iALI) models, due to their relevance for basic and specialized research, respectively. Epithelial complexity was observed to vary amongst the filter-based models, and all models were found to exhibit characteristic extracellular oxygen depletion patterns under normoxia. Importantly, the extracellular oxygen contents of Calu-3 LLI, cALI, and CM models significantly decreased during normoxic incubation. Specific hypoxia responses through stabilization of HIF-1α, HIF-2α, and/or HIF-3α and alteration of ACE2 protein levels differed in response to both culture format and cell type. Therefore, while all models examined provide valuable opportunities for <em>in vitro</em> exploration, variation in their morphological, physiological, and molecular characteristics necessitates careful consideration during experimental design.</div></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1872 6\",\"pages\":\"Article 119980\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488925000850\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000850","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of 3D human pulmonary epithelial model morphology and oxygen status under normoxia and hypoxia
Infection generates localized hypoxia in affected tissue, inducing cellular survival responses and modulating inflammatory processes. Consideration of oxygen status as a parameter in in vitro infection research is therefore vital to the generation of physiologically relevant data within the 3R context. In this study, we characterize the culture morphology and oxygenation of liquid-liquid interface (LLI) permanent bronchial epithelial (Calu-3), classical air-liquid interface (cALI) Calu-3, and cALI human primary bronchial epithelial cell (hBEC) models under the normoxic conditions within standard incubators, commonly employed in in vitro work. We compare the normoxic state of these models to their hypoxic state to assess changes in the airway epithelial environment in response to oxygen deprivation, and the extent to which select hypoxia responses can be observed at the molecular level. Additional juxtapositions are drawn between Calu-3 LLI and cALI models and Calu-3 conventional monolayer (CM) and inverted air-liquid interface (iALI) models, due to their relevance for basic and specialized research, respectively. Epithelial complexity was observed to vary amongst the filter-based models, and all models were found to exhibit characteristic extracellular oxygen depletion patterns under normoxia. Importantly, the extracellular oxygen contents of Calu-3 LLI, cALI, and CM models significantly decreased during normoxic incubation. Specific hypoxia responses through stabilization of HIF-1α, HIF-2α, and/or HIF-3α and alteration of ACE2 protein levels differed in response to both culture format and cell type. Therefore, while all models examined provide valuable opportunities for in vitro exploration, variation in their morphological, physiological, and molecular characteristics necessitates careful consideration during experimental design.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.