{"title":"通过肽扫描发现生物活性肽","authors":"Debora Iaculli, Steven Ballet","doi":"10.1002/psc.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Therapeutic peptides targeted at various diseases are becoming increasingly relevant for the pharmaceutical industry. Several of these drugs were originally designed by mimicking a segment of a protein of interest. As such, protein mimicry represents a promising strategy both in immunology, for the identification of B- and T-cell epitopes, as well as for the modulation of protein activity, including the disruption of protein–protein interactions (PPIs) and the interference with biological or pathological cellular functions. Several methods have been developed to pinpoint the (binding) epitopes of a protein or the regions responsible for biological activity. One of such strategies is the scanning of the protein or selected domains with synthetic overlapping peptides. As the mechanism of action of a mimetic peptide can be similar to that of the whole protein, this method offers a powerful tool for the investigation of protein function, along with providing a solid basis for the development of therapeutic candidates. This review gives a general overview of different applications of the peptide scanning methodology, describing a comparison of the preparation and use of solid-phase libraries (peptide arrays) with isolated peptide libraries and highlighting their strengths and most common applications.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Bioactive Peptides Through Peptide Scanning\",\"authors\":\"Debora Iaculli, Steven Ballet\",\"doi\":\"10.1002/psc.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Therapeutic peptides targeted at various diseases are becoming increasingly relevant for the pharmaceutical industry. Several of these drugs were originally designed by mimicking a segment of a protein of interest. As such, protein mimicry represents a promising strategy both in immunology, for the identification of B- and T-cell epitopes, as well as for the modulation of protein activity, including the disruption of protein–protein interactions (PPIs) and the interference with biological or pathological cellular functions. Several methods have been developed to pinpoint the (binding) epitopes of a protein or the regions responsible for biological activity. One of such strategies is the scanning of the protein or selected domains with synthetic overlapping peptides. As the mechanism of action of a mimetic peptide can be similar to that of the whole protein, this method offers a powerful tool for the investigation of protein function, along with providing a solid basis for the development of therapeutic candidates. This review gives a general overview of different applications of the peptide scanning methodology, describing a comparison of the preparation and use of solid-phase libraries (peptide arrays) with isolated peptide libraries and highlighting their strengths and most common applications.</p>\\n </div>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70029\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of Bioactive Peptides Through Peptide Scanning
Therapeutic peptides targeted at various diseases are becoming increasingly relevant for the pharmaceutical industry. Several of these drugs were originally designed by mimicking a segment of a protein of interest. As such, protein mimicry represents a promising strategy both in immunology, for the identification of B- and T-cell epitopes, as well as for the modulation of protein activity, including the disruption of protein–protein interactions (PPIs) and the interference with biological or pathological cellular functions. Several methods have been developed to pinpoint the (binding) epitopes of a protein or the regions responsible for biological activity. One of such strategies is the scanning of the protein or selected domains with synthetic overlapping peptides. As the mechanism of action of a mimetic peptide can be similar to that of the whole protein, this method offers a powerful tool for the investigation of protein function, along with providing a solid basis for the development of therapeutic candidates. This review gives a general overview of different applications of the peptide scanning methodology, describing a comparison of the preparation and use of solid-phase libraries (peptide arrays) with isolated peptide libraries and highlighting their strengths and most common applications.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.