Manzoor Ahmed;Wali Ullah Khan;Fatma S. Alrayes;Yahia Said;Ali M. Al-Sharafi;Mi-Hye Kim;Khongorzul Dashdondov;Inam Ullah
{"title":"支持6G mec的物联网网络联合加密与优化","authors":"Manzoor Ahmed;Wali Ullah Khan;Fatma S. Alrayes;Yahia Said;Ali M. Al-Sharafi;Mi-Hye Kim;Khongorzul Dashdondov;Inam Ullah","doi":"10.1109/ACCESS.2025.3565415","DOIUrl":null,"url":null,"abstract":"With the advent of advancements in future sixth-generation (6G) communication systems, Internet of Things (IoT) devices, characterized by their limited computational and communication capacities, have become integral in our lives. These devices are deployed extensively to gather vast amounts of data in real-time applications. However, their restricted battery life and computational resources present significant challenges in meeting the requirements of advanced communication systems. Mobile Edge Computing (MEC) has emerged as a promising solution to these challenges within the IoT realm in recent years. Despite its potential, securing MEC infrastructure in the context of IoT remains an open task. This study explores the operational dynamics of a secured IoT-enabled MEC infrastructure, focusing on providing real-time, on-demand, secure computational resources to low-powered IoT devices. It outlines a joint optimization problem to maximize computational throughput, minimize device energy consumption, reduce computational latency, and mitigate security overhead. An optimization algorithm is introduced to address these challenges by jointly allocating resources, thereby optimizing throughput, conserving energy, and meeting latency benchmarks through dynamic system adaptation. The effectiveness of the proposed model and algorithm is demonstrated through comparisons with relevant benchmark schemes, highlighting its efficiency in various scenarios. This work showcases the potential of advancements in encryption to deliver scalable security solutions with reduced resource consumption as the number of devices increases.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"79757-79770"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979853","citationCount":"0","resultStr":"{\"title\":\"Joint Encryption and Optimization for 6G MEC-Enabled IoT Networks\",\"authors\":\"Manzoor Ahmed;Wali Ullah Khan;Fatma S. Alrayes;Yahia Said;Ali M. Al-Sharafi;Mi-Hye Kim;Khongorzul Dashdondov;Inam Ullah\",\"doi\":\"10.1109/ACCESS.2025.3565415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of advancements in future sixth-generation (6G) communication systems, Internet of Things (IoT) devices, characterized by their limited computational and communication capacities, have become integral in our lives. These devices are deployed extensively to gather vast amounts of data in real-time applications. However, their restricted battery life and computational resources present significant challenges in meeting the requirements of advanced communication systems. Mobile Edge Computing (MEC) has emerged as a promising solution to these challenges within the IoT realm in recent years. Despite its potential, securing MEC infrastructure in the context of IoT remains an open task. This study explores the operational dynamics of a secured IoT-enabled MEC infrastructure, focusing on providing real-time, on-demand, secure computational resources to low-powered IoT devices. It outlines a joint optimization problem to maximize computational throughput, minimize device energy consumption, reduce computational latency, and mitigate security overhead. An optimization algorithm is introduced to address these challenges by jointly allocating resources, thereby optimizing throughput, conserving energy, and meeting latency benchmarks through dynamic system adaptation. The effectiveness of the proposed model and algorithm is demonstrated through comparisons with relevant benchmark schemes, highlighting its efficiency in various scenarios. This work showcases the potential of advancements in encryption to deliver scalable security solutions with reduced resource consumption as the number of devices increases.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"79757-79770\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979853\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979853/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979853/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint Encryption and Optimization for 6G MEC-Enabled IoT Networks
With the advent of advancements in future sixth-generation (6G) communication systems, Internet of Things (IoT) devices, characterized by their limited computational and communication capacities, have become integral in our lives. These devices are deployed extensively to gather vast amounts of data in real-time applications. However, their restricted battery life and computational resources present significant challenges in meeting the requirements of advanced communication systems. Mobile Edge Computing (MEC) has emerged as a promising solution to these challenges within the IoT realm in recent years. Despite its potential, securing MEC infrastructure in the context of IoT remains an open task. This study explores the operational dynamics of a secured IoT-enabled MEC infrastructure, focusing on providing real-time, on-demand, secure computational resources to low-powered IoT devices. It outlines a joint optimization problem to maximize computational throughput, minimize device energy consumption, reduce computational latency, and mitigate security overhead. An optimization algorithm is introduced to address these challenges by jointly allocating resources, thereby optimizing throughput, conserving energy, and meeting latency benchmarks through dynamic system adaptation. The effectiveness of the proposed model and algorithm is demonstrated through comparisons with relevant benchmark schemes, highlighting its efficiency in various scenarios. This work showcases the potential of advancements in encryption to deliver scalable security solutions with reduced resource consumption as the number of devices increases.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.