{"title":"早期视神经脊髓炎抗体诱导小鼠脑组织星形胶质细胞终足水通道蛋白4及相关蛋白的分子变化","authors":"Yumi Yoshikawa , Masaki Tomioka , Yoichiro Abe , Masato Yasui , Mutsuo Nuriya","doi":"10.1016/j.jphs.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>Neuromyelitis optica spectrum disorder (NMOSD) is characterized by the production of autoantibodies against aquaporin 4 (AQP4). Because NMOSD progressively causes irreversible and severe neurological damages, understanding the initial molecular changes induced by anti-AQP4 antibody binding is crucial for designing early interventions. However, knowledge about the effects of the antibodies before AQP4 loss in brain tissues is limited. Using acutely prepared mouse brain slices, we aimed to investigate the initial molecular impact of NMO model antibodies on AQP4 and its associated proteins. We employed two different types of NMO model antibodies, E5415A and E5415B; E5415A recognizes both M1 and M23 isoforms, whereas E5415B exclusively binds to M23. We found that E5415A but not E5415B disrupted the uniform perivascular localization of AQP4, leading to fragmentation. We further addressed the impact of these changes on AQP4-associated proteins and found that strong colocalizations between AQP4 and dystrophin-glycoprotein complex (DGC) components were preserved, even after AQP4 localization pattern became fragmented. Thus, our study reveals the initial molecular changes in the AQP4 channel at the astrocytic endfeet in response to NMO model antibodies and highlights the early pathological events occurring in NMOSD.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"158 3","pages":"Pages 212-218"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early neuromyelitis optica antibody-induced molecular changes in aquaporin 4 and associated proteins at astrocyte endfeet in murine brain tissues\",\"authors\":\"Yumi Yoshikawa , Masaki Tomioka , Yoichiro Abe , Masato Yasui , Mutsuo Nuriya\",\"doi\":\"10.1016/j.jphs.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuromyelitis optica spectrum disorder (NMOSD) is characterized by the production of autoantibodies against aquaporin 4 (AQP4). Because NMOSD progressively causes irreversible and severe neurological damages, understanding the initial molecular changes induced by anti-AQP4 antibody binding is crucial for designing early interventions. However, knowledge about the effects of the antibodies before AQP4 loss in brain tissues is limited. Using acutely prepared mouse brain slices, we aimed to investigate the initial molecular impact of NMO model antibodies on AQP4 and its associated proteins. We employed two different types of NMO model antibodies, E5415A and E5415B; E5415A recognizes both M1 and M23 isoforms, whereas E5415B exclusively binds to M23. We found that E5415A but not E5415B disrupted the uniform perivascular localization of AQP4, leading to fragmentation. We further addressed the impact of these changes on AQP4-associated proteins and found that strong colocalizations between AQP4 and dystrophin-glycoprotein complex (DGC) components were preserved, even after AQP4 localization pattern became fragmented. Thus, our study reveals the initial molecular changes in the AQP4 channel at the astrocytic endfeet in response to NMO model antibodies and highlights the early pathological events occurring in NMOSD.</div></div>\",\"PeriodicalId\":16786,\"journal\":{\"name\":\"Journal of pharmacological sciences\",\"volume\":\"158 3\",\"pages\":\"Pages 212-218\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1347861325000519\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000519","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Early neuromyelitis optica antibody-induced molecular changes in aquaporin 4 and associated proteins at astrocyte endfeet in murine brain tissues
Neuromyelitis optica spectrum disorder (NMOSD) is characterized by the production of autoantibodies against aquaporin 4 (AQP4). Because NMOSD progressively causes irreversible and severe neurological damages, understanding the initial molecular changes induced by anti-AQP4 antibody binding is crucial for designing early interventions. However, knowledge about the effects of the antibodies before AQP4 loss in brain tissues is limited. Using acutely prepared mouse brain slices, we aimed to investigate the initial molecular impact of NMO model antibodies on AQP4 and its associated proteins. We employed two different types of NMO model antibodies, E5415A and E5415B; E5415A recognizes both M1 and M23 isoforms, whereas E5415B exclusively binds to M23. We found that E5415A but not E5415B disrupted the uniform perivascular localization of AQP4, leading to fragmentation. We further addressed the impact of these changes on AQP4-associated proteins and found that strong colocalizations between AQP4 and dystrophin-glycoprotein complex (DGC) components were preserved, even after AQP4 localization pattern became fragmented. Thus, our study reveals the initial molecular changes in the AQP4 channel at the astrocytic endfeet in response to NMO model antibodies and highlights the early pathological events occurring in NMOSD.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.