基于压缩感知的振荡动力系统重构中的多种性能

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hadia Naeem , Chun-Wang Su , Mei Ji , Nan Yao , Zi-Gang Huang , Celso Grebogi
{"title":"基于压缩感知的振荡动力系统重构中的多种性能","authors":"Hadia Naeem ,&nbsp;Chun-Wang Su ,&nbsp;Mei Ji ,&nbsp;Nan Yao ,&nbsp;Zi-Gang Huang ,&nbsp;Celso Grebogi","doi":"10.1016/j.chaos.2025.116508","DOIUrl":null,"url":null,"abstract":"<div><div>Even though compressive sensing (CS) has been successfully implemented in numerous chaotic dynamical systems, there remains a lack of in-depth understanding of how this inverse problem method performs when reconstructing periodic dynamical systems. In this work, we investigate the reconstruction of a periodic dynamical system based on CS, considering the Landau–Stuart (LS) oscillator as a paradigmatic model. Unlike chaotic systems, the periodic dynamics bring some challenges to robust reconstruction by CS. We identified that by introducing slight differences or diversity in the dynamics of coupled Landau–Stuart (LS) oscillator systems, for example, coupling asymmetry, frequency detuning, and amplitude disparity, the process of achieving robust reconstruction by CS becomes considerably smooth.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116508"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse performance in compressive sensing-based reconstruction of an oscillatory dynamical system\",\"authors\":\"Hadia Naeem ,&nbsp;Chun-Wang Su ,&nbsp;Mei Ji ,&nbsp;Nan Yao ,&nbsp;Zi-Gang Huang ,&nbsp;Celso Grebogi\",\"doi\":\"10.1016/j.chaos.2025.116508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Even though compressive sensing (CS) has been successfully implemented in numerous chaotic dynamical systems, there remains a lack of in-depth understanding of how this inverse problem method performs when reconstructing periodic dynamical systems. In this work, we investigate the reconstruction of a periodic dynamical system based on CS, considering the Landau–Stuart (LS) oscillator as a paradigmatic model. Unlike chaotic systems, the periodic dynamics bring some challenges to robust reconstruction by CS. We identified that by introducing slight differences or diversity in the dynamics of coupled Landau–Stuart (LS) oscillator systems, for example, coupling asymmetry, frequency detuning, and amplitude disparity, the process of achieving robust reconstruction by CS becomes considerably smooth.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"198 \",\"pages\":\"Article 116508\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925005211\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005211","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尽管压缩感知(CS)已经在许多混沌动力系统中成功实现,但对于这种逆问题方法在重建周期动力系统时的表现仍然缺乏深入的了解。在这项工作中,我们研究了基于CS的周期动力系统的重建,考虑了Landau-Stuart (LS)振荡器作为一个范例模型。与混沌系统不同,周期动力学给混沌系统的鲁棒重建带来了一些挑战。我们发现,通过在耦合朗道-斯图尔特(LS)振荡器系统的动力学中引入细微的差异或多样性,例如耦合不对称、频率失谐和振幅差异,CS实现鲁棒重建的过程变得相当顺利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse performance in compressive sensing-based reconstruction of an oscillatory dynamical system
Even though compressive sensing (CS) has been successfully implemented in numerous chaotic dynamical systems, there remains a lack of in-depth understanding of how this inverse problem method performs when reconstructing periodic dynamical systems. In this work, we investigate the reconstruction of a periodic dynamical system based on CS, considering the Landau–Stuart (LS) oscillator as a paradigmatic model. Unlike chaotic systems, the periodic dynamics bring some challenges to robust reconstruction by CS. We identified that by introducing slight differences or diversity in the dynamics of coupled Landau–Stuart (LS) oscillator systems, for example, coupling asymmetry, frequency detuning, and amplitude disparity, the process of achieving robust reconstruction by CS becomes considerably smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信