Giuseppe Orlando , Sebastiano Boscarino , Giovanni Russo
{"title":"非理想气体Euler方程的高阶渐近保持和渐近精确IMEX方法的定量比较","authors":"Giuseppe Orlando , Sebastiano Boscarino , Giovanni Russo","doi":"10.1016/j.cma.2025.118037","DOIUrl":null,"url":null,"abstract":"<div><div>We present a quantitative comparison between two different Implicit–Explicit Runge–Kutta (IMEX-RK) approaches for the Euler equations of gas dynamics, specifically tailored for the low Mach limit. In this regime, a classical IMEX-RK approach involves an implicit coupling between the momentum and energy balance so as to avoid the acoustic CFL restriction, while the density can be treated in a fully explicit fashion. This approach leads to a mildly nonlinear equation for the pressure, which can be solved according to a fixed point procedure. An alternative strategy consists of employing a semi-implicit temporal integrator based on IMEX-RK methods (SI-IMEX-RK). The stiff dependence is carefully analyzed, so as to avoid the solution of a nonlinear equation for the pressure also for equations of state (EOS) of non-ideal gases. The spatial discretization is based on a Discontinuous Galerkin (DG) method, which naturally allows high-order accuracy. The asymptotic-preserving (AP) and the asymptotically-accurate (AA) properties of the two approaches are assessed on a number of classical benchmarks for ideal gases and on their extension to non-ideal gases.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"442 ","pages":"Article 118037"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative comparison of high-order asymptotic-preserving and asymptotically-accurate IMEX methods for the Euler equations with non-ideal gases\",\"authors\":\"Giuseppe Orlando , Sebastiano Boscarino , Giovanni Russo\",\"doi\":\"10.1016/j.cma.2025.118037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a quantitative comparison between two different Implicit–Explicit Runge–Kutta (IMEX-RK) approaches for the Euler equations of gas dynamics, specifically tailored for the low Mach limit. In this regime, a classical IMEX-RK approach involves an implicit coupling between the momentum and energy balance so as to avoid the acoustic CFL restriction, while the density can be treated in a fully explicit fashion. This approach leads to a mildly nonlinear equation for the pressure, which can be solved according to a fixed point procedure. An alternative strategy consists of employing a semi-implicit temporal integrator based on IMEX-RK methods (SI-IMEX-RK). The stiff dependence is carefully analyzed, so as to avoid the solution of a nonlinear equation for the pressure also for equations of state (EOS) of non-ideal gases. The spatial discretization is based on a Discontinuous Galerkin (DG) method, which naturally allows high-order accuracy. The asymptotic-preserving (AP) and the asymptotically-accurate (AA) properties of the two approaches are assessed on a number of classical benchmarks for ideal gases and on their extension to non-ideal gases.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"442 \",\"pages\":\"Article 118037\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003093\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003093","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A quantitative comparison of high-order asymptotic-preserving and asymptotically-accurate IMEX methods for the Euler equations with non-ideal gases
We present a quantitative comparison between two different Implicit–Explicit Runge–Kutta (IMEX-RK) approaches for the Euler equations of gas dynamics, specifically tailored for the low Mach limit. In this regime, a classical IMEX-RK approach involves an implicit coupling between the momentum and energy balance so as to avoid the acoustic CFL restriction, while the density can be treated in a fully explicit fashion. This approach leads to a mildly nonlinear equation for the pressure, which can be solved according to a fixed point procedure. An alternative strategy consists of employing a semi-implicit temporal integrator based on IMEX-RK methods (SI-IMEX-RK). The stiff dependence is carefully analyzed, so as to avoid the solution of a nonlinear equation for the pressure also for equations of state (EOS) of non-ideal gases. The spatial discretization is based on a Discontinuous Galerkin (DG) method, which naturally allows high-order accuracy. The asymptotic-preserving (AP) and the asymptotically-accurate (AA) properties of the two approaches are assessed on a number of classical benchmarks for ideal gases and on their extension to non-ideal gases.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.