Zhang Shuxia , Zhang Ping , Zheng Xiaoyan , Mao Sichao , Xu Xinyi , Kevin Waldron , Wang Chenfeng , Sherin R. Rouby , Ahmed H. Ghonaim , Chen Xingxiang
{"title":"FB1通过PINK1/Parkin介导的线粒体自噬依赖机制,通过铁凋亡导致血管内皮细胞屏障损伤","authors":"Zhang Shuxia , Zhang Ping , Zheng Xiaoyan , Mao Sichao , Xu Xinyi , Kevin Waldron , Wang Chenfeng , Sherin R. Rouby , Ahmed H. Ghonaim , Chen Xingxiang","doi":"10.1016/j.cbi.2025.111536","DOIUrl":null,"url":null,"abstract":"<div><div>Fumonisin B1 (FB1) is an environmental mycotoxin produced mainly by fungi of the genus <em>Fusarium</em>. Exposure to FB1 can lead to pulmonary edema in pigs, likely caused by damage to vascular endothelial cells, but the mechanism of FB1-induced damage was unknown. Here, we found that FB1 damages vascular endothelial cells through ferroptosis, marked by iron-dependent membrane lipid peroxidation, and through mitophagy, a selective autophagy that targets mitochondria. FB1 exposure reduced barrier-related gene expression and increased pro-inflammatory factors. Ferroptosis was evidenced by elevated iron, ROS, lipid peroxidation, and ferroptotic markers (TFR, ACSL4), alongside decreased GSH, SLC7A11, and GPX-4 levels in vascular endothelial cells. Importantly, the ferroptosis inhibitor, Ferrostatin-1, reversed the vascular endothelial cells’ barrier damage, inflammation, and ferroptosis caused by FB1. FB1-induced mitophagy was demonstrated by detecting decreased mitochondrial membrane potential and increased levels of mitophagy-related proteins. Surprisingly, silencing PINK1 using siRNA not only diminished mitophagy, cellular damage, and inflammatory responses induced by FB1, but also mitigated FB1-induced ferroptosis. In conclusion, this study demonstrates that FB1 causes vascular endothelial cell damage by ferroptosis in a mitophagy-dependent manner. This study thus lays a mechanistic foundation for the study of FB1 causing pulmonary edema in pigs and for exploring options for therapeutic intervention in conditions caused by this mycotoxin, which causes substantial harm to both human and animal health.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"416 ","pages":"Article 111536"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FB1 causes barrier damage to vascular endothelial cells through ferroptosis by a PINK1/Parkin mediated mitophagy-dependent mechanism\",\"authors\":\"Zhang Shuxia , Zhang Ping , Zheng Xiaoyan , Mao Sichao , Xu Xinyi , Kevin Waldron , Wang Chenfeng , Sherin R. Rouby , Ahmed H. Ghonaim , Chen Xingxiang\",\"doi\":\"10.1016/j.cbi.2025.111536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fumonisin B1 (FB1) is an environmental mycotoxin produced mainly by fungi of the genus <em>Fusarium</em>. Exposure to FB1 can lead to pulmonary edema in pigs, likely caused by damage to vascular endothelial cells, but the mechanism of FB1-induced damage was unknown. Here, we found that FB1 damages vascular endothelial cells through ferroptosis, marked by iron-dependent membrane lipid peroxidation, and through mitophagy, a selective autophagy that targets mitochondria. FB1 exposure reduced barrier-related gene expression and increased pro-inflammatory factors. Ferroptosis was evidenced by elevated iron, ROS, lipid peroxidation, and ferroptotic markers (TFR, ACSL4), alongside decreased GSH, SLC7A11, and GPX-4 levels in vascular endothelial cells. Importantly, the ferroptosis inhibitor, Ferrostatin-1, reversed the vascular endothelial cells’ barrier damage, inflammation, and ferroptosis caused by FB1. FB1-induced mitophagy was demonstrated by detecting decreased mitochondrial membrane potential and increased levels of mitophagy-related proteins. Surprisingly, silencing PINK1 using siRNA not only diminished mitophagy, cellular damage, and inflammatory responses induced by FB1, but also mitigated FB1-induced ferroptosis. In conclusion, this study demonstrates that FB1 causes vascular endothelial cell damage by ferroptosis in a mitophagy-dependent manner. This study thus lays a mechanistic foundation for the study of FB1 causing pulmonary edema in pigs and for exploring options for therapeutic intervention in conditions caused by this mycotoxin, which causes substantial harm to both human and animal health.</div></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"416 \",\"pages\":\"Article 111536\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279725001668\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725001668","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FB1 causes barrier damage to vascular endothelial cells through ferroptosis by a PINK1/Parkin mediated mitophagy-dependent mechanism
Fumonisin B1 (FB1) is an environmental mycotoxin produced mainly by fungi of the genus Fusarium. Exposure to FB1 can lead to pulmonary edema in pigs, likely caused by damage to vascular endothelial cells, but the mechanism of FB1-induced damage was unknown. Here, we found that FB1 damages vascular endothelial cells through ferroptosis, marked by iron-dependent membrane lipid peroxidation, and through mitophagy, a selective autophagy that targets mitochondria. FB1 exposure reduced barrier-related gene expression and increased pro-inflammatory factors. Ferroptosis was evidenced by elevated iron, ROS, lipid peroxidation, and ferroptotic markers (TFR, ACSL4), alongside decreased GSH, SLC7A11, and GPX-4 levels in vascular endothelial cells. Importantly, the ferroptosis inhibitor, Ferrostatin-1, reversed the vascular endothelial cells’ barrier damage, inflammation, and ferroptosis caused by FB1. FB1-induced mitophagy was demonstrated by detecting decreased mitochondrial membrane potential and increased levels of mitophagy-related proteins. Surprisingly, silencing PINK1 using siRNA not only diminished mitophagy, cellular damage, and inflammatory responses induced by FB1, but also mitigated FB1-induced ferroptosis. In conclusion, this study demonstrates that FB1 causes vascular endothelial cell damage by ferroptosis in a mitophagy-dependent manner. This study thus lays a mechanistic foundation for the study of FB1 causing pulmonary edema in pigs and for exploring options for therapeutic intervention in conditions caused by this mycotoxin, which causes substantial harm to both human and animal health.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.