{"title":"聚苯胺衍生氮磷共掺杂碳负载钯金双金属催化剂的制备及对氯硝基苯选择性加氢催化性能研究","authors":"Heshun Jing , Libo Sun , Qingtai Xie, Yuqi Zhai, Caixia Qi, Baorong Duan, Xun Sun, Lijun Zhao, Miao Zhang, Huijuan Su","doi":"10.1016/j.apcata.2025.120332","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an efficient catalyst (0.05 %Pd-0.5 %Au/NPC) was prepared by supporting Pd-Au bimetallic nanoparticles on a phytic acid-doped polyaniline-derived N/P co-doped carbon (NPC) support. The catalytic performance of 0.05 %Pd-0.5 %Au/NPC for the p-chloronitrobenzene (p-CNB) hydrogenation to p-chloroaniline (p-CAN) was systematically evaluated. Experiments demonstrated that the introduction of trace amounts of Pd significantly enhanced the conversion rate of the Au-based catalyst while maintaining good selectivity. The NPC support optimized the dispersion and surface electronic states of the metal nanoparticles by enhancing the metal-support electronic interaction, enabling the catalyst to achieve complete p-CNB conversion with a good selectivity (>98 %) under conditions of 100 °C and 1.2 MPa H<sub>2</sub>. The P doping induced an electron-deficient state on the metal surface, promoting preferential adsorption of -NO<sub>2</sub> groups in p-CNB and desorption of -NH<sub>2</sub> of products p-CAN, thereby improving catalytic efficiency. This paper provides a new strategy for developing efficient and environmentally friendly catalysts for the hydrogenation of halonitroaromatics and offers a novel method for regulating the electronic structure of noble metals in carbon-based noble metal catalysts.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"702 ","pages":"Article 120332"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and catalytic performance study of Pd-Au bimetallic catalysts supported on polyaniline-derived nitrogen and phosphorus co-doped carbon for the selective hydrogenation of p-chloronitrobenzene\",\"authors\":\"Heshun Jing , Libo Sun , Qingtai Xie, Yuqi Zhai, Caixia Qi, Baorong Duan, Xun Sun, Lijun Zhao, Miao Zhang, Huijuan Su\",\"doi\":\"10.1016/j.apcata.2025.120332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an efficient catalyst (0.05 %Pd-0.5 %Au/NPC) was prepared by supporting Pd-Au bimetallic nanoparticles on a phytic acid-doped polyaniline-derived N/P co-doped carbon (NPC) support. The catalytic performance of 0.05 %Pd-0.5 %Au/NPC for the p-chloronitrobenzene (p-CNB) hydrogenation to p-chloroaniline (p-CAN) was systematically evaluated. Experiments demonstrated that the introduction of trace amounts of Pd significantly enhanced the conversion rate of the Au-based catalyst while maintaining good selectivity. The NPC support optimized the dispersion and surface electronic states of the metal nanoparticles by enhancing the metal-support electronic interaction, enabling the catalyst to achieve complete p-CNB conversion with a good selectivity (>98 %) under conditions of 100 °C and 1.2 MPa H<sub>2</sub>. The P doping induced an electron-deficient state on the metal surface, promoting preferential adsorption of -NO<sub>2</sub> groups in p-CNB and desorption of -NH<sub>2</sub> of products p-CAN, thereby improving catalytic efficiency. This paper provides a new strategy for developing efficient and environmentally friendly catalysts for the hydrogenation of halonitroaromatics and offers a novel method for regulating the electronic structure of noble metals in carbon-based noble metal catalysts.</div></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":\"702 \",\"pages\":\"Article 120332\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X25002339\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25002339","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation and catalytic performance study of Pd-Au bimetallic catalysts supported on polyaniline-derived nitrogen and phosphorus co-doped carbon for the selective hydrogenation of p-chloronitrobenzene
In this paper, an efficient catalyst (0.05 %Pd-0.5 %Au/NPC) was prepared by supporting Pd-Au bimetallic nanoparticles on a phytic acid-doped polyaniline-derived N/P co-doped carbon (NPC) support. The catalytic performance of 0.05 %Pd-0.5 %Au/NPC for the p-chloronitrobenzene (p-CNB) hydrogenation to p-chloroaniline (p-CAN) was systematically evaluated. Experiments demonstrated that the introduction of trace amounts of Pd significantly enhanced the conversion rate of the Au-based catalyst while maintaining good selectivity. The NPC support optimized the dispersion and surface electronic states of the metal nanoparticles by enhancing the metal-support electronic interaction, enabling the catalyst to achieve complete p-CNB conversion with a good selectivity (>98 %) under conditions of 100 °C and 1.2 MPa H2. The P doping induced an electron-deficient state on the metal surface, promoting preferential adsorption of -NO2 groups in p-CNB and desorption of -NH2 of products p-CAN, thereby improving catalytic efficiency. This paper provides a new strategy for developing efficient and environmentally friendly catalysts for the hydrogenation of halonitroaromatics and offers a novel method for regulating the electronic structure of noble metals in carbon-based noble metal catalysts.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.