不同渗流过渡的热力学分析

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Seonghyeon Moon , Young Sul Cho
{"title":"不同渗流过渡的热力学分析","authors":"Seonghyeon Moon ,&nbsp;Young Sul Cho","doi":"10.1016/j.chaos.2025.116491","DOIUrl":null,"url":null,"abstract":"<div><div>This work extends the thermodynamic analysis of random bond percolation to explosive and hybrid percolation models. We show that this thermodynamic analysis is well applicable to both explosive and hybrid percolation models by using the critical exponents <span><math><mi>α</mi></math></span> and <span><math><mi>δ</mi></math></span> obtained from scaling relations with previously measured values of <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> within the error range. As a result, Rushbrooke inequality holds as an equality, <span><math><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mi>β</mi><mo>+</mo><mi>γ</mi><mo>=</mo><mn>2</mn></mrow></math></span>, in both explosive and hybrid percolation models, where <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> leads to the divergence of specific heats at the critical points. Remarkably, entropy clearly reveals a continuous decrease even in a finite-sized explosive percolation model, unlike the order parameter. In contrast, entropy decreases discontinuously during a discontinuous transition in a hybrid percolation model, resembling the heat outflow during discontinuous transitions in thermal systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic analysis of diverse percolation transitions\",\"authors\":\"Seonghyeon Moon ,&nbsp;Young Sul Cho\",\"doi\":\"10.1016/j.chaos.2025.116491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work extends the thermodynamic analysis of random bond percolation to explosive and hybrid percolation models. We show that this thermodynamic analysis is well applicable to both explosive and hybrid percolation models by using the critical exponents <span><math><mi>α</mi></math></span> and <span><math><mi>δ</mi></math></span> obtained from scaling relations with previously measured values of <span><math><mi>β</mi></math></span> and <span><math><mi>γ</mi></math></span> within the error range. As a result, Rushbrooke inequality holds as an equality, <span><math><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mi>β</mi><mo>+</mo><mi>γ</mi><mo>=</mo><mn>2</mn></mrow></math></span>, in both explosive and hybrid percolation models, where <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> leads to the divergence of specific heats at the critical points. Remarkably, entropy clearly reveals a continuous decrease even in a finite-sized explosive percolation model, unlike the order parameter. In contrast, entropy decreases discontinuously during a discontinuous transition in a hybrid percolation model, resembling the heat outflow during discontinuous transitions in thermal systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"198 \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925005041\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005041","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作将随机键渗流的热力学分析扩展到爆炸和混合渗流模型。通过与先前测得的β和γ值在误差范围内的标度关系得到的临界指数α和δ,我们证明了这种热力学分析很好地适用于爆炸和混合渗流模型。因此,拉什布鲁克不等式在爆炸渗流模型和混合渗流模型中均成立,α+2β+γ=2, α>;0导致临界点比热发散。值得注意的是,与序参量不同,即使在有限尺寸的爆炸渗流模型中,熵也清楚地显示出连续下降。相反,在混合渗流模型中,熵在不连续过渡期间不连续地减少,类似于热系统中不连续过渡期间的热量流出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic analysis of diverse percolation transitions
This work extends the thermodynamic analysis of random bond percolation to explosive and hybrid percolation models. We show that this thermodynamic analysis is well applicable to both explosive and hybrid percolation models by using the critical exponents α and δ obtained from scaling relations with previously measured values of β and γ within the error range. As a result, Rushbrooke inequality holds as an equality, α+2β+γ=2, in both explosive and hybrid percolation models, where α>0 leads to the divergence of specific heats at the critical points. Remarkably, entropy clearly reveals a continuous decrease even in a finite-sized explosive percolation model, unlike the order parameter. In contrast, entropy decreases discontinuously during a discontinuous transition in a hybrid percolation model, resembling the heat outflow during discontinuous transitions in thermal systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信