{"title":"基于机器学习的氢回收模型,通过分子动力学模拟预测钨材料上释放的氢分子的旋转振动分布","authors":"Seiki Saito , Masato Iida , Hiroaki Nakamura , Keiji Sawada , Kazuo Hoshino , Masahiro Kobayashi , Masahiro Hasuo , Yuki Homma , Shohei Yamoto","doi":"10.1016/j.nme.2025.101942","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the hydrogen recycling process is crucial for comprehending the behavior of detached plasma in nuclear fusion devices. To achieve this, a molecular dynamics (MD) model is being developed to predict the distribution of translational energies and rovibrational states of hydrogen atoms and molecules released from the plasma-facing materials. Neutral transport simulations, utilizing distributions obtained from the MD model as boundary conditions, are also a powerful tool for analyzing the impact of recycled hydrogens on edge plasma. However, the MD model requires significant computational resources to obtain distributions under varying material and irradiation conditions such as material temperature and incident energy. Therefore, developing effective models that seamlessly integrate neutral transport simulation with hydrogen recycling models is crucial. Machine learning techniques are employed to develop predictive models capable of forecasting distributions of energies and rovibrational states of released hydrogen atoms and molecules. Furthermore, a model considering the incident energy distribution (shifted-Maxwellian) is developed by integrating the monochromatic distribution with the shifted-Maxwellian distribution.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"43 ","pages":"Article 101942"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based hydrogen recycling model for predicting rovibrational distributions of released molecular hydrogen on tungsten materials via molecular dynamics simulations\",\"authors\":\"Seiki Saito , Masato Iida , Hiroaki Nakamura , Keiji Sawada , Kazuo Hoshino , Masahiro Kobayashi , Masahiro Hasuo , Yuki Homma , Shohei Yamoto\",\"doi\":\"10.1016/j.nme.2025.101942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the hydrogen recycling process is crucial for comprehending the behavior of detached plasma in nuclear fusion devices. To achieve this, a molecular dynamics (MD) model is being developed to predict the distribution of translational energies and rovibrational states of hydrogen atoms and molecules released from the plasma-facing materials. Neutral transport simulations, utilizing distributions obtained from the MD model as boundary conditions, are also a powerful tool for analyzing the impact of recycled hydrogens on edge plasma. However, the MD model requires significant computational resources to obtain distributions under varying material and irradiation conditions such as material temperature and incident energy. Therefore, developing effective models that seamlessly integrate neutral transport simulation with hydrogen recycling models is crucial. Machine learning techniques are employed to develop predictive models capable of forecasting distributions of energies and rovibrational states of released hydrogen atoms and molecules. Furthermore, a model considering the incident energy distribution (shifted-Maxwellian) is developed by integrating the monochromatic distribution with the shifted-Maxwellian distribution.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"43 \",\"pages\":\"Article 101942\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179125000845\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179125000845","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Machine learning-based hydrogen recycling model for predicting rovibrational distributions of released molecular hydrogen on tungsten materials via molecular dynamics simulations
Understanding the hydrogen recycling process is crucial for comprehending the behavior of detached plasma in nuclear fusion devices. To achieve this, a molecular dynamics (MD) model is being developed to predict the distribution of translational energies and rovibrational states of hydrogen atoms and molecules released from the plasma-facing materials. Neutral transport simulations, utilizing distributions obtained from the MD model as boundary conditions, are also a powerful tool for analyzing the impact of recycled hydrogens on edge plasma. However, the MD model requires significant computational resources to obtain distributions under varying material and irradiation conditions such as material temperature and incident energy. Therefore, developing effective models that seamlessly integrate neutral transport simulation with hydrogen recycling models is crucial. Machine learning techniques are employed to develop predictive models capable of forecasting distributions of energies and rovibrational states of released hydrogen atoms and molecules. Furthermore, a model considering the incident energy distribution (shifted-Maxwellian) is developed by integrating the monochromatic distribution with the shifted-Maxwellian distribution.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.