Vera Fischer , Sy David Friedman , David Schrittesser , Asger Törnquist
{"title":"好的投影证人","authors":"Vera Fischer , Sy David Friedman , David Schrittesser , Asger Törnquist","doi":"10.1016/j.apal.2025.103606","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a new forcing notion for adjoining self-coding cofinitary permutations and use it to show that consistently, the minimal cardinality <span><math><msub><mrow><mi>a</mi></mrow><mrow><mtext>g</mtext></mrow></msub></math></span> of a maximal cofinitary group (MCG) is strictly between <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>, and there is a <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-definable MCG of this cardinality. Here <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is optimal, making this result a natural counterpart to the Borel MCG of Horowitz and Shelah. Our theorem has its analogue in the realm of maximal almost disjoint (MAD) families, extending a line of results regarding the definability properties of MAD families in models with large continuum.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103606"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Good projective witnesses\",\"authors\":\"Vera Fischer , Sy David Friedman , David Schrittesser , Asger Törnquist\",\"doi\":\"10.1016/j.apal.2025.103606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a new forcing notion for adjoining self-coding cofinitary permutations and use it to show that consistently, the minimal cardinality <span><math><msub><mrow><mi>a</mi></mrow><mrow><mtext>g</mtext></mrow></msub></math></span> of a maximal cofinitary group (MCG) is strictly between <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>, and there is a <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-definable MCG of this cardinality. Here <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is optimal, making this result a natural counterpart to the Borel MCG of Horowitz and Shelah. Our theorem has its analogue in the realm of maximal almost disjoint (MAD) families, extending a line of results regarding the definability properties of MAD families in models with large continuum.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 8\",\"pages\":\"Article 103606\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000557\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We develop a new forcing notion for adjoining self-coding cofinitary permutations and use it to show that consistently, the minimal cardinality of a maximal cofinitary group (MCG) is strictly between and , and there is a -definable MCG of this cardinality. Here is optimal, making this result a natural counterpart to the Borel MCG of Horowitz and Shelah. Our theorem has its analogue in the realm of maximal almost disjoint (MAD) families, extending a line of results regarding the definability properties of MAD families in models with large continuum.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.