Paula Rodríguez , Rubén Parte , Guillermo A. González , Alejandra Gacho , Darío Santos , Rubén Usamentiaga , Oscar D. Pedrayes
{"title":"伊比利亚鸟类:伊比利亚半岛上现存的飞禽物种的数据集","authors":"Paula Rodríguez , Rubén Parte , Guillermo A. González , Alejandra Gacho , Darío Santos , Rubén Usamentiaga , Oscar D. Pedrayes","doi":"10.1016/j.dib.2025.111610","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in computer vision and deep learning have transformed ecological monitoring and species identification, enabling automated and accurate data labelling. Despite these advancements, robust AI-driven solutions for avian species recognition remain limited, primarily due to the scarcity of high-quality annotated datasets. To address this gap, this article introduces IBERBIRDS—a comprehensive and publicly accessible dataset specifically designed to facilitate automatic detection and classification of flying bird species in the Iberian Peninsula under real-world conditions.</div><div>The dataset comprises 4000 images representing 10 ecologically significant medium to large-sized bird species, with each image annotated using bounding box coordinates in the YOLO detection format. Unlike existing datasets that typically feature close-up or ideal-condition imagery, IBERBIRDS focuses on mid-to-long range photographs of birds in flight, providing a more realistic and challenging representation of scenarios commonly encountered in birdwatching, conservation, and ecological monitoring. Images were sourced from publicly available, expert-validated ornithology platforms and underwent rigorous quality control to ensure annotation accuracy and consistency. This process included homogenizing color profiles and formats, as well as manual refinement to ensure that each image contains a single bird specimen. Additionally, detailed provenance and taxonomic metadata for each image has been systematically integrated into the dataset.</div><div>The lack of pre-annotated datasets has significantly restricted large-scale ecological analysis and the development of automated techniques in avian research, hindering the progress of AI-driven solutions tailored for bird species recognition. By addressing this gap, this dataset serves as a comprehensive benchmark for avian studies, fostering advancements in various applications such as conservation initiatives, environmental impact assessments, biodiversity preservation strategies, real-time tracking systems, and video-based analysis. Additionally, IBERBIRDS constitutes a resource for computer vision applications, supporting educational programs tailored to ornithologists and birdwatching communities. By openly providing this dataset, IBERBIRDS promotes scientific collaboration and technological advancements, ultimately contributing to the preservation and understanding of avian biodiversity.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111610"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IBERBIRDS: A dataset of flying bird species present in the Iberian Peninsula\",\"authors\":\"Paula Rodríguez , Rubén Parte , Guillermo A. González , Alejandra Gacho , Darío Santos , Rubén Usamentiaga , Oscar D. Pedrayes\",\"doi\":\"10.1016/j.dib.2025.111610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in computer vision and deep learning have transformed ecological monitoring and species identification, enabling automated and accurate data labelling. Despite these advancements, robust AI-driven solutions for avian species recognition remain limited, primarily due to the scarcity of high-quality annotated datasets. To address this gap, this article introduces IBERBIRDS—a comprehensive and publicly accessible dataset specifically designed to facilitate automatic detection and classification of flying bird species in the Iberian Peninsula under real-world conditions.</div><div>The dataset comprises 4000 images representing 10 ecologically significant medium to large-sized bird species, with each image annotated using bounding box coordinates in the YOLO detection format. Unlike existing datasets that typically feature close-up or ideal-condition imagery, IBERBIRDS focuses on mid-to-long range photographs of birds in flight, providing a more realistic and challenging representation of scenarios commonly encountered in birdwatching, conservation, and ecological monitoring. Images were sourced from publicly available, expert-validated ornithology platforms and underwent rigorous quality control to ensure annotation accuracy and consistency. This process included homogenizing color profiles and formats, as well as manual refinement to ensure that each image contains a single bird specimen. Additionally, detailed provenance and taxonomic metadata for each image has been systematically integrated into the dataset.</div><div>The lack of pre-annotated datasets has significantly restricted large-scale ecological analysis and the development of automated techniques in avian research, hindering the progress of AI-driven solutions tailored for bird species recognition. By addressing this gap, this dataset serves as a comprehensive benchmark for avian studies, fostering advancements in various applications such as conservation initiatives, environmental impact assessments, biodiversity preservation strategies, real-time tracking systems, and video-based analysis. Additionally, IBERBIRDS constitutes a resource for computer vision applications, supporting educational programs tailored to ornithologists and birdwatching communities. By openly providing this dataset, IBERBIRDS promotes scientific collaboration and technological advancements, ultimately contributing to the preservation and understanding of avian biodiversity.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"60 \",\"pages\":\"Article 111610\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340925003427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925003427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
IBERBIRDS: A dataset of flying bird species present in the Iberian Peninsula
Advancements in computer vision and deep learning have transformed ecological monitoring and species identification, enabling automated and accurate data labelling. Despite these advancements, robust AI-driven solutions for avian species recognition remain limited, primarily due to the scarcity of high-quality annotated datasets. To address this gap, this article introduces IBERBIRDS—a comprehensive and publicly accessible dataset specifically designed to facilitate automatic detection and classification of flying bird species in the Iberian Peninsula under real-world conditions.
The dataset comprises 4000 images representing 10 ecologically significant medium to large-sized bird species, with each image annotated using bounding box coordinates in the YOLO detection format. Unlike existing datasets that typically feature close-up or ideal-condition imagery, IBERBIRDS focuses on mid-to-long range photographs of birds in flight, providing a more realistic and challenging representation of scenarios commonly encountered in birdwatching, conservation, and ecological monitoring. Images were sourced from publicly available, expert-validated ornithology platforms and underwent rigorous quality control to ensure annotation accuracy and consistency. This process included homogenizing color profiles and formats, as well as manual refinement to ensure that each image contains a single bird specimen. Additionally, detailed provenance and taxonomic metadata for each image has been systematically integrated into the dataset.
The lack of pre-annotated datasets has significantly restricted large-scale ecological analysis and the development of automated techniques in avian research, hindering the progress of AI-driven solutions tailored for bird species recognition. By addressing this gap, this dataset serves as a comprehensive benchmark for avian studies, fostering advancements in various applications such as conservation initiatives, environmental impact assessments, biodiversity preservation strategies, real-time tracking systems, and video-based analysis. Additionally, IBERBIRDS constitutes a resource for computer vision applications, supporting educational programs tailored to ornithologists and birdwatching communities. By openly providing this dataset, IBERBIRDS promotes scientific collaboration and technological advancements, ultimately contributing to the preservation and understanding of avian biodiversity.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.