V. Lindholm, A. Finoguenov, A. Balaguera-Antolínez, T. Castro
{"title":"CODEX集群的功率谱","authors":"V. Lindholm, A. Finoguenov, A. Balaguera-Antolínez, T. Castro","doi":"10.1051/0004-6361/202453402","DOIUrl":null,"url":null,"abstract":"<i>Aims.<i/> We analyze the clustering of galaxy clusters in a large contiguous sample, the Constrain Dark Energy with X-ray (CODEX) sample. We construct a likelihood for cosmological parameters by comparing the measured clustering signal and a theoretical prediction, and use this to obtain parameter constraints.<i>Methods.<i/> We measured the three multipole moments (monopole, quadrupole, and hexadecapole, <i>ℓ<i/> = 0, 2, 4) of the power spectrum of a subset of the CODEX clusters. To fully model cluster clustering, we also determined the expected clustering bias of the sample using estimates for the cluster masses and a mass-to-bias model calibrated using <i>N<i/>-body simulations. We estimated the covariance matrix of the measured power spectrum multipoles using a set of simulated dark-matter halo catalogs. Combining all these ingredients, we performed a Markov chain Monte Carlo sampling of cosmological parameters Ω<sub>m<sub/> and <i>σ<i/><sub>8<sub/> to obtain their posterior.<i>Results.<i/> We found the CODEX clustering signal to be consistent with an earlier X-ray selected cluster sample, the REFLEX II sample. We also found that the measured power spectrum multipoles are compatible with the predicted, bias-scaled linear matter power spectrum when the cosmological parameters determined by the Planck satellite are assumed. Furthermore, we found the marginalized parameter constraints of and . The full 2D posterior is consistent, for example, with the Planck cosmology within the 68% confidence region.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"61 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power spectrum of the CODEX clusters\",\"authors\":\"V. Lindholm, A. Finoguenov, A. Balaguera-Antolínez, T. Castro\",\"doi\":\"10.1051/0004-6361/202453402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Aims.<i/> We analyze the clustering of galaxy clusters in a large contiguous sample, the Constrain Dark Energy with X-ray (CODEX) sample. We construct a likelihood for cosmological parameters by comparing the measured clustering signal and a theoretical prediction, and use this to obtain parameter constraints.<i>Methods.<i/> We measured the three multipole moments (monopole, quadrupole, and hexadecapole, <i>ℓ<i/> = 0, 2, 4) of the power spectrum of a subset of the CODEX clusters. To fully model cluster clustering, we also determined the expected clustering bias of the sample using estimates for the cluster masses and a mass-to-bias model calibrated using <i>N<i/>-body simulations. We estimated the covariance matrix of the measured power spectrum multipoles using a set of simulated dark-matter halo catalogs. Combining all these ingredients, we performed a Markov chain Monte Carlo sampling of cosmological parameters Ω<sub>m<sub/> and <i>σ<i/><sub>8<sub/> to obtain their posterior.<i>Results.<i/> We found the CODEX clustering signal to be consistent with an earlier X-ray selected cluster sample, the REFLEX II sample. We also found that the measured power spectrum multipoles are compatible with the predicted, bias-scaled linear matter power spectrum when the cosmological parameters determined by the Planck satellite are assumed. Furthermore, we found the marginalized parameter constraints of and . The full 2D posterior is consistent, for example, with the Planck cosmology within the 68% confidence region.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202453402\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453402","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Aims. We analyze the clustering of galaxy clusters in a large contiguous sample, the Constrain Dark Energy with X-ray (CODEX) sample. We construct a likelihood for cosmological parameters by comparing the measured clustering signal and a theoretical prediction, and use this to obtain parameter constraints.Methods. We measured the three multipole moments (monopole, quadrupole, and hexadecapole, ℓ = 0, 2, 4) of the power spectrum of a subset of the CODEX clusters. To fully model cluster clustering, we also determined the expected clustering bias of the sample using estimates for the cluster masses and a mass-to-bias model calibrated using N-body simulations. We estimated the covariance matrix of the measured power spectrum multipoles using a set of simulated dark-matter halo catalogs. Combining all these ingredients, we performed a Markov chain Monte Carlo sampling of cosmological parameters Ωm and σ8 to obtain their posterior.Results. We found the CODEX clustering signal to be consistent with an earlier X-ray selected cluster sample, the REFLEX II sample. We also found that the measured power spectrum multipoles are compatible with the predicted, bias-scaled linear matter power spectrum when the cosmological parameters determined by the Planck satellite are assumed. Furthermore, we found the marginalized parameter constraints of and . The full 2D posterior is consistent, for example, with the Planck cosmology within the 68% confidence region.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.