母源基因的亲本调控决定了鱼类的神经发育和行为

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Antoine Emile Clément, Constance Merdrignac, Sergi Roig Puiggros, Dorine Sévère, Aurélien Brionne, Thomas Lafond, Thaovi Nguyen, Jérôme Montfort, Cervin Guyomar, Alexandra Dauvé, Amaury Herpin, Denis Jabaudon, Violaine Colson, Florent Murat, Julien Bobe
{"title":"母源基因的亲本调控决定了鱼类的神经发育和行为","authors":"Antoine Emile Clément, Constance Merdrignac, Sergi Roig Puiggros, Dorine Sévère, Aurélien Brionne, Thomas Lafond, Thaovi Nguyen, Jérôme Montfort, Cervin Guyomar, Alexandra Dauvé, Amaury Herpin, Denis Jabaudon, Violaine Colson, Florent Murat, Julien Bobe","doi":"10.1186/s13059-025-03600-y","DOIUrl":null,"url":null,"abstract":"Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother’s oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"49 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish\",\"authors\":\"Antoine Emile Clément, Constance Merdrignac, Sergi Roig Puiggros, Dorine Sévère, Aurélien Brionne, Thomas Lafond, Thaovi Nguyen, Jérôme Montfort, Cervin Guyomar, Alexandra Dauvé, Amaury Herpin, Denis Jabaudon, Violaine Colson, Florent Murat, Julien Bobe\",\"doi\":\"10.1186/s13059-025-03600-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother’s oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03600-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03600-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

亲代经历可以通过配子介导的非基因遗传影响后代的行为,即不涉及遗传DNA序列改变的机制。然而,脊椎动物的潜在机制仍然知之甚少,特别是对母体的影响。在这里,我们使用medaka(一种模式鱼)来研究auts2a的作用,auts2a是人类AUTS2的同源物,是一种在母源应激后鱼卵母细胞中被抑制的基因,与神经发育障碍有关。我们发现,卵母细胞中auts2a的表达会影响后代的长期行为,包括焦虑样行为和环境识别能力。利用单核rna测序,我们揭示了母系auts2a在神经发育过程中影响神经细胞群的基因表达。我们还发现,母亲的auts2a基因敲除引发了母亲遗传因素的差异,包括早期胚胎转录和转录后调控因子。总之,我们的研究结果揭示了母亲卵母细胞中表达的自闭症相关基因在塑造后代神经发育和行为方面的不可思议的作用。最后,我们报道了auts2a/AUTS2是一组与人类神经发育障碍相关的进化保守基因的一部分,并在从鱼类到哺乳动物的各种卵母细胞中表达。这些发现提出了重要的问题,即它们在脊椎动物后代神经发育和行为的非遗传调控中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish
Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother’s oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信