大多数人类DNA复制起始分散在整个基因组中,只有少数在先前确定的起始区

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jamie T. Carrington, Rosemary H. C. Wilson, Eduardo de La Vega, Sathish Thiyagarajan, Tom Barker, Leah Catchpole, Alex Durrant, Vanda Knitlhoffer, Chris Watkins, Karim Gharbi, Conrad A. Nieduszynski
{"title":"大多数人类DNA复制起始分散在整个基因组中,只有少数在先前确定的起始区","authors":"Jamie T. Carrington, Rosemary H. C. Wilson, Eduardo de La Vega, Sathish Thiyagarajan, Tom Barker, Leah Catchpole, Alex Durrant, Vanda Knitlhoffer, Chris Watkins, Karim Gharbi, Conrad A. Nieduszynski","doi":"10.1186/s13059-025-03591-w","DOIUrl":null,"url":null,"abstract":"The identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction, and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single molecules with high resolution, throughout S-phase, genome-wide, and at high coverage at specific loci using targeted enrichment. We find a significant enrichment of initiation sites within the broad initiation zones identified by population-level studies. However, these focused initiation sites only account for ~ 20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. We show here that single-molecule sequencing enables unbiased detection and characterization of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"28 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Most human DNA replication initiation is dispersed throughout the genome with only a minority within previously identified initiation zones\",\"authors\":\"Jamie T. Carrington, Rosemary H. C. Wilson, Eduardo de La Vega, Sathish Thiyagarajan, Tom Barker, Leah Catchpole, Alex Durrant, Vanda Knitlhoffer, Chris Watkins, Karim Gharbi, Conrad A. Nieduszynski\",\"doi\":\"10.1186/s13059-025-03591-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction, and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single molecules with high resolution, throughout S-phase, genome-wide, and at high coverage at specific loci using targeted enrichment. We find a significant enrichment of initiation sites within the broad initiation zones identified by population-level studies. However, these focused initiation sites only account for ~ 20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. We show here that single-molecule sequencing enables unbiased detection and characterization of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03591-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03591-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物细胞DNA复制起始位点的鉴定一直具有挑战性。在这里,我们提出了使用BrdU掺入和单分子纳米孔测序对人类细胞复制起始事件的无偏检测。BrdU掺入的增加使我们能够测量DNA复制动力学,包括在单个纳米孔测序读取上识别复制起始、叉方向和终止。重要的是,起始和终止事件在单分子上以高分辨率识别,在整个s期,全基因组范围内,并在特定位点使用靶向富集具有高覆盖率。我们发现,在种群水平研究确定的广泛起始区内,起始位点显著丰富。然而,这些集中的起始位点仅占所有已确定的复制起始事件的约20%。大多数起始事件分散在整个基因组中,被细胞群体方法所遗漏。这表明大多数起始发生在很少单独使用的位点。这些分散的起始位点与群体研究确定的集中位点形成对比,因为它们没有显示出与转录或特定表观遗传特征的强烈关系。我们在这里展示了单分子测序能够无偏地检测和表征DNA复制起始事件,包括复制大多数人类基因组的众多分散起始事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Most human DNA replication initiation is dispersed throughout the genome with only a minority within previously identified initiation zones
The identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction, and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single molecules with high resolution, throughout S-phase, genome-wide, and at high coverage at specific loci using targeted enrichment. We find a significant enrichment of initiation sites within the broad initiation zones identified by population-level studies. However, these focused initiation sites only account for ~ 20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. We show here that single-molecule sequencing enables unbiased detection and characterization of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信