Wei Ni, Xiaofeng Ge, Yang Liu, Jingyu Chen, Lin Wang, Linjian Chen, Zhaokai Li, Peng Zhang, Shufen Huang, Junhui Xu, Le Zhang, Xiabin Fan, Gang Wang, Wei Huang, Yuanchao Ye, Jiancang Zhou, Cuilian Dai, Binbin Liu
{"title":"CD163+巨噬细胞通过白细胞介素-10减轻压力过载引起的左心室收缩功能障碍和心脏线粒体功能障碍","authors":"Wei Ni, Xiaofeng Ge, Yang Liu, Jingyu Chen, Lin Wang, Linjian Chen, Zhaokai Li, Peng Zhang, Shufen Huang, Junhui Xu, Le Zhang, Xiabin Fan, Gang Wang, Wei Huang, Yuanchao Ye, Jiancang Zhou, Cuilian Dai, Binbin Liu","doi":"10.1007/s00395-025-01114-z","DOIUrl":null,"url":null,"abstract":"<p>Macrophage depletion exacerbates pressure overload-induced heart failure, but therapeutic translation is hindered by macrophage subset heterogeneity. The functional role of CD163<sup>+</sup> macrophages in heart failure remains unclear. Transverse aortic constriction (TAC) was employed to induce pressure overload. <i>Cd163</i><sup>−/−</sup> mice exhibited significantly aggravated TAC-induced left ventricular systolic dysfunction, as demonstrated by reduced ejection fraction, fractional shortening, and global longitudinal strain, compared to wild-type (WT) controls. RNA sequencing of cardiac tissues revealed significant differential gene expression between TAC-treated WT and <i>Cd163</i><sup>−/−</sup> mice, especially in pathways governing mitochondrial bioenergetics and homeostasis. Transmission electron microscopy confirmed greater accumulation of dysfunctional mitochondria in cardiomyocytes of <i>Cd163</i><sup>−/−</sup> mice relative to WT following TAC. Additionally, the proportion of CD163<sup>+</sup> macrophages among cardiac macrophages increased post-TAC. Serum IL-10 levels and cardiac macrophage IL-10 expression were significantly diminished in <i>Cd163</i><sup>−/−</sup> mice compared to WT after TAC. IL-10 supplementation effectively reversed the TAC-induced impairment in left ventricular systolic function in both WT and <i>Cd163</i><sup>−/−</sup> mice, and reduced NADH/NAD<sup>+</sup> ratios, reduced mitochondrial dysfunction, and improved mitochondrial membrane potential in <i>Cd163</i><sup>−/−</sup> mice. Cross-sectional clinical data supported these findings, showing decreased IL-10 levels as a significant risk factor for heart failure in hypertensive patients (odds ratio: 0.397; 95% CI 0.203–0.775; p = 0.007). Collectively, these results highlight the protective role of CD163<sup>+</sup> macrophages against pressure overload-induced left ventricular dysfunction and mitochondrial dysfunction through IL-10-dependent pathways.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"75 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD163+ macrophages attenuate pressure overload-induced left ventricular systolic dysfunction and cardiac mitochondrial dysfunction via interleukin-10\",\"authors\":\"Wei Ni, Xiaofeng Ge, Yang Liu, Jingyu Chen, Lin Wang, Linjian Chen, Zhaokai Li, Peng Zhang, Shufen Huang, Junhui Xu, Le Zhang, Xiabin Fan, Gang Wang, Wei Huang, Yuanchao Ye, Jiancang Zhou, Cuilian Dai, Binbin Liu\",\"doi\":\"10.1007/s00395-025-01114-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macrophage depletion exacerbates pressure overload-induced heart failure, but therapeutic translation is hindered by macrophage subset heterogeneity. The functional role of CD163<sup>+</sup> macrophages in heart failure remains unclear. Transverse aortic constriction (TAC) was employed to induce pressure overload. <i>Cd163</i><sup>−/−</sup> mice exhibited significantly aggravated TAC-induced left ventricular systolic dysfunction, as demonstrated by reduced ejection fraction, fractional shortening, and global longitudinal strain, compared to wild-type (WT) controls. RNA sequencing of cardiac tissues revealed significant differential gene expression between TAC-treated WT and <i>Cd163</i><sup>−/−</sup> mice, especially in pathways governing mitochondrial bioenergetics and homeostasis. Transmission electron microscopy confirmed greater accumulation of dysfunctional mitochondria in cardiomyocytes of <i>Cd163</i><sup>−/−</sup> mice relative to WT following TAC. Additionally, the proportion of CD163<sup>+</sup> macrophages among cardiac macrophages increased post-TAC. Serum IL-10 levels and cardiac macrophage IL-10 expression were significantly diminished in <i>Cd163</i><sup>−/−</sup> mice compared to WT after TAC. IL-10 supplementation effectively reversed the TAC-induced impairment in left ventricular systolic function in both WT and <i>Cd163</i><sup>−/−</sup> mice, and reduced NADH/NAD<sup>+</sup> ratios, reduced mitochondrial dysfunction, and improved mitochondrial membrane potential in <i>Cd163</i><sup>−/−</sup> mice. Cross-sectional clinical data supported these findings, showing decreased IL-10 levels as a significant risk factor for heart failure in hypertensive patients (odds ratio: 0.397; 95% CI 0.203–0.775; p = 0.007). Collectively, these results highlight the protective role of CD163<sup>+</sup> macrophages against pressure overload-induced left ventricular dysfunction and mitochondrial dysfunction through IL-10-dependent pathways.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-025-01114-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-025-01114-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
CD163+ macrophages attenuate pressure overload-induced left ventricular systolic dysfunction and cardiac mitochondrial dysfunction via interleukin-10
Macrophage depletion exacerbates pressure overload-induced heart failure, but therapeutic translation is hindered by macrophage subset heterogeneity. The functional role of CD163+ macrophages in heart failure remains unclear. Transverse aortic constriction (TAC) was employed to induce pressure overload. Cd163−/− mice exhibited significantly aggravated TAC-induced left ventricular systolic dysfunction, as demonstrated by reduced ejection fraction, fractional shortening, and global longitudinal strain, compared to wild-type (WT) controls. RNA sequencing of cardiac tissues revealed significant differential gene expression between TAC-treated WT and Cd163−/− mice, especially in pathways governing mitochondrial bioenergetics and homeostasis. Transmission electron microscopy confirmed greater accumulation of dysfunctional mitochondria in cardiomyocytes of Cd163−/− mice relative to WT following TAC. Additionally, the proportion of CD163+ macrophages among cardiac macrophages increased post-TAC. Serum IL-10 levels and cardiac macrophage IL-10 expression were significantly diminished in Cd163−/− mice compared to WT after TAC. IL-10 supplementation effectively reversed the TAC-induced impairment in left ventricular systolic function in both WT and Cd163−/− mice, and reduced NADH/NAD+ ratios, reduced mitochondrial dysfunction, and improved mitochondrial membrane potential in Cd163−/− mice. Cross-sectional clinical data supported these findings, showing decreased IL-10 levels as a significant risk factor for heart failure in hypertensive patients (odds ratio: 0.397; 95% CI 0.203–0.775; p = 0.007). Collectively, these results highlight the protective role of CD163+ macrophages against pressure overload-induced left ventricular dysfunction and mitochondrial dysfunction through IL-10-dependent pathways.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology