{"title":"平面单向非对称系统粘弹性半主动装置控制的能量框架","authors":"M. De Iuliis, E. Miceli, P. Castaldo","doi":"10.1155/stc/7091316","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study proposes new strategies for the semi-active control of the dynamic response of a plan-wise asymmetrical structural system using viscoelastic devices. Different from some literature proposals, these innovative strategies are designed to be immediately interpretable, aiming to optimize the different terms of the energy balance equation through a set of closed-form analytical control algorithms to manage the properties of semi-active devices. Specifically, four algorithms have been developed to maximize the energy dissipated by the system or minimize the elastic energy, kinetic energy, and input energy. These algorithms have been tested through an extensive numerical investigation by modifying the main structural parameters of the asymmetrical system and considering 85 accelerometric input signals with different dynamic characteristics related to both far-field and near-fault records. The effectiveness of the four proposed strategies, aimed to modify the semi-active device properties, was evaluated by comparing the seismic responses of asymmetric systems, in terms of both relative displacement and energy components, with the regular configuration of semi-active devices (i.e., passive control) and other algorithms, such as “Kamagata & Kobori” and “sky hook” finalized, respectively, to manage stiffness and damping extra-structural resources. The results demonstrated the effectiveness of the proposed strategies, especially, in the presence of flexible systems and high-demanding near-fault seismic events.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/7091316","citationCount":"0","resultStr":"{\"title\":\"An Energy Framework to Control Viscoelastic Semi-Active Devices in Plan-Wise One-Way Asymmetric Systems\",\"authors\":\"M. De Iuliis, E. Miceli, P. Castaldo\",\"doi\":\"10.1155/stc/7091316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This study proposes new strategies for the semi-active control of the dynamic response of a plan-wise asymmetrical structural system using viscoelastic devices. Different from some literature proposals, these innovative strategies are designed to be immediately interpretable, aiming to optimize the different terms of the energy balance equation through a set of closed-form analytical control algorithms to manage the properties of semi-active devices. Specifically, four algorithms have been developed to maximize the energy dissipated by the system or minimize the elastic energy, kinetic energy, and input energy. These algorithms have been tested through an extensive numerical investigation by modifying the main structural parameters of the asymmetrical system and considering 85 accelerometric input signals with different dynamic characteristics related to both far-field and near-fault records. The effectiveness of the four proposed strategies, aimed to modify the semi-active device properties, was evaluated by comparing the seismic responses of asymmetric systems, in terms of both relative displacement and energy components, with the regular configuration of semi-active devices (i.e., passive control) and other algorithms, such as “Kamagata & Kobori” and “sky hook” finalized, respectively, to manage stiffness and damping extra-structural resources. The results demonstrated the effectiveness of the proposed strategies, especially, in the presence of flexible systems and high-demanding near-fault seismic events.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/7091316\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/7091316\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/7091316","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An Energy Framework to Control Viscoelastic Semi-Active Devices in Plan-Wise One-Way Asymmetric Systems
This study proposes new strategies for the semi-active control of the dynamic response of a plan-wise asymmetrical structural system using viscoelastic devices. Different from some literature proposals, these innovative strategies are designed to be immediately interpretable, aiming to optimize the different terms of the energy balance equation through a set of closed-form analytical control algorithms to manage the properties of semi-active devices. Specifically, four algorithms have been developed to maximize the energy dissipated by the system or minimize the elastic energy, kinetic energy, and input energy. These algorithms have been tested through an extensive numerical investigation by modifying the main structural parameters of the asymmetrical system and considering 85 accelerometric input signals with different dynamic characteristics related to both far-field and near-fault records. The effectiveness of the four proposed strategies, aimed to modify the semi-active device properties, was evaluated by comparing the seismic responses of asymmetric systems, in terms of both relative displacement and energy components, with the regular configuration of semi-active devices (i.e., passive control) and other algorithms, such as “Kamagata & Kobori” and “sky hook” finalized, respectively, to manage stiffness and damping extra-structural resources. The results demonstrated the effectiveness of the proposed strategies, especially, in the presence of flexible systems and high-demanding near-fault seismic events.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.