基于局部搜索和存档机制的航班调度多目标优化

IF 0.8 Q4 ROBOTICS
Tomoki Ishizuka, Akinori Murata, Hiroyuki Sato, Keiki Takadama
{"title":"基于局部搜索和存档机制的航班调度多目标优化","authors":"Tomoki Ishizuka,&nbsp;Akinori Murata,&nbsp;Hiroyuki Sato,&nbsp;Keiki Takadama","doi":"10.1007/s10015-025-01021-5","DOIUrl":null,"url":null,"abstract":"<div><p>To introduce the concept of the “constraint tolerance” (i.e., a feasibility of solutions) in the flight scheduling problem, this paper proposes the optimization method that can find the feasible flight schedules by optimizing the original objective function while maximizing the constraint tolerance as much as possible. The proposed method further is improved by integrating it with the local search and archive mechanisms to obtain a wide range of Pareto-optimal solutions with a high constraint tolerance. A comparison between the proposed method and the conventional methods with or without adding a new objective function to maximize the constraint tolerance shows the statistical superiority of the proposed method.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 2","pages":"289 - 302"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of flight schedules to maximize constraint tolerance by local search and archive mechanisms\",\"authors\":\"Tomoki Ishizuka,&nbsp;Akinori Murata,&nbsp;Hiroyuki Sato,&nbsp;Keiki Takadama\",\"doi\":\"10.1007/s10015-025-01021-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To introduce the concept of the “constraint tolerance” (i.e., a feasibility of solutions) in the flight scheduling problem, this paper proposes the optimization method that can find the feasible flight schedules by optimizing the original objective function while maximizing the constraint tolerance as much as possible. The proposed method further is improved by integrating it with the local search and archive mechanisms to obtain a wide range of Pareto-optimal solutions with a high constraint tolerance. A comparison between the proposed method and the conventional methods with or without adding a new objective function to maximize the constraint tolerance shows the statistical superiority of the proposed method.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"30 2\",\"pages\":\"289 - 302\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-025-01021-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-025-01021-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了引入航班调度问题中“约束容忍度”(即解的可行性)的概念,本文提出了一种优化方法,通过优化原目标函数找到可行的航班调度,同时使约束容忍度尽可能最大化。将该方法与局部搜索和存档机制相结合,得到约束容忍度高的大范围pareto最优解。通过与常规方法的比较,表明了该方法在统计上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of flight schedules to maximize constraint tolerance by local search and archive mechanisms

To introduce the concept of the “constraint tolerance” (i.e., a feasibility of solutions) in the flight scheduling problem, this paper proposes the optimization method that can find the feasible flight schedules by optimizing the original objective function while maximizing the constraint tolerance as much as possible. The proposed method further is improved by integrating it with the local search and archive mechanisms to obtain a wide range of Pareto-optimal solutions with a high constraint tolerance. A comparison between the proposed method and the conventional methods with or without adding a new objective function to maximize the constraint tolerance shows the statistical superiority of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信