关于沿边界穿孔区域上的非线性泛函的高可积性

IF 1.4 3区 数学 Q1 MATHEMATICS
Gregory A. Chechkin
{"title":"关于沿边界穿孔区域上的非线性泛函的高可积性","authors":"Gregory A. Chechkin","doi":"10.1007/s13324-025-01064-8","DOIUrl":null,"url":null,"abstract":"<div><p>We proved higher integrability (the Boyarsky–Meyers estimate) of solutions to nonlinear minimizing problems (i.e. for minimizers of nonlinear functionals) in domains perforated along the boundary.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On higher integrability of minimizer to a nonlinear functional in domains perforated along the boundary\",\"authors\":\"Gregory A. Chechkin\",\"doi\":\"10.1007/s13324-025-01064-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We proved higher integrability (the Boyarsky–Meyers estimate) of solutions to nonlinear minimizing problems (i.e. for minimizers of nonlinear functionals) in domains perforated along the boundary.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01064-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01064-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了沿边界穿孔区域的非线性最小化问题(即非线性泛函的最小化)的解的高可积性(Boyarsky-Meyers估计)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On higher integrability of minimizer to a nonlinear functional in domains perforated along the boundary

We proved higher integrability (the Boyarsky–Meyers estimate) of solutions to nonlinear minimizing problems (i.e. for minimizers of nonlinear functionals) in domains perforated along the boundary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信