弧形涡丝的长时间特性及其在圆涡丝稳定性中的应用

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Masashi Aiki
{"title":"弧形涡丝的长时间特性及其在圆涡丝稳定性中的应用","authors":"Masashi Aiki","doi":"10.1007/s00205-025-02104-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02104-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Long-Time Behavior of an Arc-Shaped Vortex Filament and Its Application to the Stability of a Circular Vortex Filament\",\"authors\":\"Masashi Aiki\",\"doi\":\"10.1007/s00205-025-02104-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02104-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02104-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02104-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个非线性模型方程,称为局域感应方程,描述涡流灯丝浸入不可压缩和无粘性流体中的运动。我们给出了圆弧型涡丝的稳定性估计,这是局域感应方程初边值问题的精确解。圆弧形状的灯丝沿轴匀速运动而不改变其形状,其方向使弧线停留在垂直于轴的平面上。我们证明了除了轴向的扰动可以随时间线性增长外,圆弧形细丝在一般扰动下在李亚普诺夫意义上是稳定的。我们也证明了这个估计是最优的。然后,我们应用得到的稳定性估计,在初始扰动的一些对称假设下,研究了圆形涡旋丝的稳定性。我们通过将圆形灯丝划分为弧,将稳定性估计应用于每个弧形灯丝,并将估计组合以获得整个圆的估计。圆弧型灯丝稳定性估计的最优性也表明圆形灯丝在李亚普诺夫意义上是不稳定的,即某些扰动可以随时间线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Time Behavior of an Arc-Shaped Vortex Filament and Its Application to the Stability of a Circular Vortex Filament

We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信