{"title":"弧形涡丝的长时间特性及其在圆涡丝稳定性中的应用","authors":"Masashi Aiki","doi":"10.1007/s00205-025-02104-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02104-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Long-Time Behavior of an Arc-Shaped Vortex Filament and Its Application to the Stability of a Circular Vortex Filament\",\"authors\":\"Masashi Aiki\",\"doi\":\"10.1007/s00205-025-02104-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02104-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02104-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02104-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Long-Time Behavior of an Arc-Shaped Vortex Filament and Its Application to the Stability of a Circular Vortex Filament
We consider a nonlinear model equation, known as the Localized Induction Equation, describing the motion of a vortex filament immersed in an incompressible and inviscid fluid. We show stability estimates for an arc-shaped vortex filament, which is an exact solution to an initial-boundary value problem for the Localized Induction Equation. An arc-shaped filament travels along an axis at a constant speed without changing its shape, and is oriented in such a way that the arc stays in a plane that is perpendicular to the axis. We prove that an arc-shaped filament is stable in the Lyapunov sense for general perturbations except in the axis-direction, for which the perturbation can grow linearly in time. We also show that this estimate is optimal. We then apply the obtained stability estimates to study the stability of a circular vortex filament under some symmetry assumptions on the initial perturbation. We do this by dividing the circular filament into arcs, apply the stability estimate to each arc-shaped filament, and combine the estimates to obtain estimates for the whole circle. The optimality of the stability estimates for an arc-shaped filament also shows that a circular filament is not stable in the Lyapunov sense, namely, certain perturbations can grow linearly in time.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.