Jinan Han, Ying Xu, Yan Zhou, Ning Zhu, Jiazhen Gao, Li Huang
{"title":"低温治疗和重组促红细胞生成素通过调节戊糖磷酸途径减轻脑微血管内皮细胞功能障碍","authors":"Jinan Han, Ying Xu, Yan Zhou, Ning Zhu, Jiazhen Gao, Li Huang","doi":"10.1007/s12031-025-02356-1","DOIUrl":null,"url":null,"abstract":"<div><p>Neonatal brains are particularly vulnerable to oxidative stress, making the pentose phosphate pathway (PPP) pivotal in damage limitation. This study aimed to confirm the mechanism of erythropoietin combined with therapeutic hypothermia (TH) in hypoxic-ischemic brain damage (HIBD). Neonatal HIBD rat models were employed and the impacts of erythropoietin and TH on behavior, cerebral infarction, pathology, and microvascular were evaluated. Following that, the assessments of inflammation, oxidative stress, apoptosis, and the level of glucose-6-phosphate dehydrogenase (G6PD, rate-limiting enzyme in the PPP) proceeded. Human brain microvascular endothelial cells (HBMECs) underwent oxygen–glucose deprivation (OGD) and were treated with TH and G6PD inhibitor RRx-001. The impacts of the G6PD inhibitor on HBMEC function and barrier were evaluated. Simultaneous administration of TH and EPO reduced pathological damage and attenuated microvascular loss. In addition, this combination therapy had anti-inflammatory, antioxidant, and anti-apoptotic properties, and enhanced G6PD activity, both in vivo and in vitro. Inhibition of G6PD disrupted the protective effects of TH and EPO on the patency of the PPP and the function of HBMECs, and barrier integrity was further broken. This study reveals that the combination of TH and EPO mitigates microvascular endothelial cell dysfunction via partially modulating the PPP, thus preserving barrier integrity.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Hypothermia and Recombinant Erythropoietin Mitigate Brain Microvascular Endothelial Cell Dysfunction via Modulating the Pentose Phosphate Pathway\",\"authors\":\"Jinan Han, Ying Xu, Yan Zhou, Ning Zhu, Jiazhen Gao, Li Huang\",\"doi\":\"10.1007/s12031-025-02356-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neonatal brains are particularly vulnerable to oxidative stress, making the pentose phosphate pathway (PPP) pivotal in damage limitation. This study aimed to confirm the mechanism of erythropoietin combined with therapeutic hypothermia (TH) in hypoxic-ischemic brain damage (HIBD). Neonatal HIBD rat models were employed and the impacts of erythropoietin and TH on behavior, cerebral infarction, pathology, and microvascular were evaluated. Following that, the assessments of inflammation, oxidative stress, apoptosis, and the level of glucose-6-phosphate dehydrogenase (G6PD, rate-limiting enzyme in the PPP) proceeded. Human brain microvascular endothelial cells (HBMECs) underwent oxygen–glucose deprivation (OGD) and were treated with TH and G6PD inhibitor RRx-001. The impacts of the G6PD inhibitor on HBMEC function and barrier were evaluated. Simultaneous administration of TH and EPO reduced pathological damage and attenuated microvascular loss. In addition, this combination therapy had anti-inflammatory, antioxidant, and anti-apoptotic properties, and enhanced G6PD activity, both in vivo and in vitro. Inhibition of G6PD disrupted the protective effects of TH and EPO on the patency of the PPP and the function of HBMECs, and barrier integrity was further broken. This study reveals that the combination of TH and EPO mitigates microvascular endothelial cell dysfunction via partially modulating the PPP, thus preserving barrier integrity.</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"75 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-025-02356-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02356-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Therapeutic Hypothermia and Recombinant Erythropoietin Mitigate Brain Microvascular Endothelial Cell Dysfunction via Modulating the Pentose Phosphate Pathway
Neonatal brains are particularly vulnerable to oxidative stress, making the pentose phosphate pathway (PPP) pivotal in damage limitation. This study aimed to confirm the mechanism of erythropoietin combined with therapeutic hypothermia (TH) in hypoxic-ischemic brain damage (HIBD). Neonatal HIBD rat models were employed and the impacts of erythropoietin and TH on behavior, cerebral infarction, pathology, and microvascular were evaluated. Following that, the assessments of inflammation, oxidative stress, apoptosis, and the level of glucose-6-phosphate dehydrogenase (G6PD, rate-limiting enzyme in the PPP) proceeded. Human brain microvascular endothelial cells (HBMECs) underwent oxygen–glucose deprivation (OGD) and were treated with TH and G6PD inhibitor RRx-001. The impacts of the G6PD inhibitor on HBMEC function and barrier were evaluated. Simultaneous administration of TH and EPO reduced pathological damage and attenuated microvascular loss. In addition, this combination therapy had anti-inflammatory, antioxidant, and anti-apoptotic properties, and enhanced G6PD activity, both in vivo and in vitro. Inhibition of G6PD disrupted the protective effects of TH and EPO on the patency of the PPP and the function of HBMECs, and barrier integrity was further broken. This study reveals that the combination of TH and EPO mitigates microvascular endothelial cell dysfunction via partially modulating the PPP, thus preserving barrier integrity.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.