{"title":"赋范对称单一性范畴","authors":"Jonathan Rubin","doi":"10.1007/s40062-025-00366-9","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce categorical models of <span>\\(N_\\infty \\)</span> spaces, which we call normed symmetric monoidal categories (NSMCs). These are ordinary symmetric monoidal categories equipped with compatible families of norm maps, and when specialized to a particular class of examples, they reveal a connection between the equivariant symmetric monoidal categories of Guillou–May–Merling–Osorno and those of Hill–Hopkins. We also give an operadic interpretation of the Mac Lane coherence theorem and generalize it to include NSMCs. Among other things, this theorem ensures that the classifying space of an NSMC is an <span>\\(N_\\infty \\)</span> space. We conclude by extending our coherence theorem to include NSMCs with strict relations.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 2","pages":"195 - 250"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normed symmetric monoidal categories\",\"authors\":\"Jonathan Rubin\",\"doi\":\"10.1007/s40062-025-00366-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce categorical models of <span>\\\\(N_\\\\infty \\\\)</span> spaces, which we call normed symmetric monoidal categories (NSMCs). These are ordinary symmetric monoidal categories equipped with compatible families of norm maps, and when specialized to a particular class of examples, they reveal a connection between the equivariant symmetric monoidal categories of Guillou–May–Merling–Osorno and those of Hill–Hopkins. We also give an operadic interpretation of the Mac Lane coherence theorem and generalize it to include NSMCs. Among other things, this theorem ensures that the classifying space of an NSMC is an <span>\\\\(N_\\\\infty \\\\)</span> space. We conclude by extending our coherence theorem to include NSMCs with strict relations.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 2\",\"pages\":\"195 - 250\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00366-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00366-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce categorical models of \(N_\infty \) spaces, which we call normed symmetric monoidal categories (NSMCs). These are ordinary symmetric monoidal categories equipped with compatible families of norm maps, and when specialized to a particular class of examples, they reveal a connection between the equivariant symmetric monoidal categories of Guillou–May–Merling–Osorno and those of Hill–Hopkins. We also give an operadic interpretation of the Mac Lane coherence theorem and generalize it to include NSMCs. Among other things, this theorem ensures that the classifying space of an NSMC is an \(N_\infty \) space. We conclude by extending our coherence theorem to include NSMCs with strict relations.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.